ST(P) MATHEMATICS 1A
NOTES AND ANSWERS

The book starts with a large section on arithmetic. This has been kept together because we feel that all children starting a new school with a new teacher benefit from a thorough revision of basic arithmetic. Many children arrive at secondary school not sure of what they do or do not know, and what they do know is often obscured by the use of unfamiliar words.

However, many teachers will want to break up the arithmetic with other work. Tables and Networks (Chapter 13) is particularly suitable for this purpose. It is self-contained and can easily be divided into two sections that can be taught at different times. Symmetry (Chapter 10) is another self-contained unit that can be taught at an earlier stage.

CHAPTER 1 Addition and Subtraction of Whole Numbers

This chapter is intended to give practice in addition and subtraction of whole numbers. We have not introduced the calculator until near the end of this chapter but an earlier introduction may be felt to be appropriate; it can be used to check answers.

EXERCISE 1a (p. 1)
Can be used for discussion, e.g. other methods of adding several numbers such as looking for pairs of numbers that add up to ten; can also be used for mental arithmetic.

1. 10 8. 19 15. 33 22. 17 29. 26
2. 11 9. 20 16. 18 23. 20 30. 32
3. 14 10. 27 17. 25 24. 33 31. 26
4. 15 11. 15 18. 32 25. 30 32. 26
5. 17 12. 17 19. 39 26. 21 33. 40
6. 24 13. 27 20. 32 27. 21 34. 37
7. 24 14. 27 21. 24 28. 19 35. 39

EXERCISE 1b (p. 2)

1. 79 10. 2292 19. 797 28. 2764 37. 509
4. 308 13. 9072 22. 177 31. 1693 40. 1832
5. 259 14. 21829 23. 202 32. 1382 41. 2892
6. 399 15. 16244 24. 1252 33. 1896 42. 6779
7. 882 16. 112 25. 2783 34. 5230 43. 2226
8. 2039 17. 158 26. 2062 35. 4095 44. 3569
9. 991 18. 242 27. 1267 36. 581 45. 11 932

EXERCISE 1c (p. 3)
Confidence in problem solving comes from getting the answer right. More able children can be asked for some form of explanation, at least writing the answer in sentence form. Some worked examples will be necessary to indicate what they are expected to write down.
1. 89p
2. 69p
3. 88
4. £757
5. a) 261 b) 302 c) 3056 d) 1300
6. a) three hundred and twenty-four
 b) five thousand two hundred and eight
 c) one hundred and fifty
 d) one thousand five hundred

EXERCISE 1d (p. 4)

1. 11 5. 7 9. 8 13. 11 17. 5
2. 12 6. 12 10. 6 14. 8 18. 6
3. 14 7. 15 11. 13 15. 10 19. 14
4. 5 8. 9 12. 3 16. 4 20. 8

EXERCISE 1e (p. 5)

1. 211 9. 126 16. 136 23. 4823 30. 676
2. 551 10. 186 17. 713 24. 6615 31. 4077
3. 406 11. 470 18. 255 25. 575 32. 1048
4. 218 12. 354 19. 279 26. 3344 33. 77
5. 73 13. 287 20. 149 27. 1524 34. 192
6. 141 14. 178 21. 8 28. 189 35. 4195
7. 406 15. 187 22. 2828 29. 703 36. 1644
8. 126

EXERCISE 1f (p. 6)

1. 403p (or £4.03) 4. 89 7. 213 10. 19cm
2. 464 5. 287 8. 48
3. 85 6. 6483 9. 7500m

EXERCISE 1g (p. 6)

1. 6 3. 7 5. 9 7. 2 9. 9
2. 5 4. 4 6. 4 8. 7 10. 7

EXERCISE 1h (p. 7)

1. 17 7. 13 13. 0 19. 0 25. 29
2. 5 8. 3 14. 67 20. 95 26. 597
3. 2 9. 6 15. 83 21. 73 27. 19
4. 20 10. 4 16. 50 22. 20 28. 129
5. 30 11. 0 17. 0 23. 104 29. 250
6. 28 12. 25 18. 39 24. 7 30. 65
EXERCISE 1i (p. 8)
Intended for the above average but others may be able to obtain the answers with the help of a calculator.

1. 10p
2. 72
3. 80cm
4. 318
5. 144
6. 69lb
7. 17
8. 45
9. 9p

EXERCISE 1j (p. 9)

1. 8
2. 15
3. 63
4. 1
5. 4
6. 23
7. 16
8. 16
9. 7
10. 0
11. 8
12. 3
13. 8
14. 12
15. 14
16. 5
17. 16
18. 38
19. 10
20. 20
21. 250, 257
22. 60, 56
23. 210, 209
24. 510, 507
25. 330, 334
26. 40, 38
27. 370, 366
28. 260, 264
29. 180, 176
30. 770, 777
31. 60, 58
32. 20, 16
33. 160, 163
34. 160, 154
35. 150, 148
36. 40, 42
37. 280, 284
38. 230, 229
39. 370, 362
40. 160, 160
41. 370, 360
42. 210, 206
43. 230, 227
44. 250, 251
45. 330, 328
46. 290, 293
47. 250, 250
48. 300, 291
49. 180, 170
50. 360, 353

CHAPTER 2 Multiplication and Division of Whole Numbers

The word “product” is used at the beginning of this chapter and will need explanation.

EXERCISE 2a (p. 12)
Discussion of the properties of odd and even numbers is useful here, e.g. is the product of two even numbers even or odd and why? These properties can be used as simple checks on answers.

1. 46
2. 126
3. 104
4. 304
5. 290
6. 93
7. 100
8. 144
9. 144
10. 415
11. 141
12. 324
13. 126
14. 588
15. 324
16. 292
17. 162
18. 132
19. 536
20. 657
21. 294
22. 168
23. 224
24. 243
25. 608
26. 2456
27. 768
28. 388
29. 1989
30. 844
31. 2859
32. 1632
33. 2628
34. 2184
35. 852
36. 2565
37. 3174
38. 5142
39. 3486
40. 5211
41. 4606
42. 2989
43. 6784
44. 5931
45. 5236
46. 5552
47. 1652
48. 5157

EXERCISE 2b (p. 13)

1. 270
2. 8200
3. 360
4. 1080
5. 256 000
6. 540
7. 24 600
8. 2040
9. 7800
10. 2800
11. 29 200
12. 3480
13. 6630
14. 88 900
15. 146 000
16. 35 100
17. 9420
18. 23 600
19. 6160
20. 70 000
21. 48 720
22. 54 000
23. 38 920
24. 243 000
25. 35 100
26. 42 800
27. 19 200
28. 8800
29. 19 000
30. 59 920
EXERCISE 2c (p. 14)

1. 672 7. 2782 13. 398 793 19. 37 814 25. 1 438 200
2. 559 8. 4346 14. 35 028 20. 565 915 26. 36 575
3. 1290 9. 7844 15. 112 893 21. 86 172 27. 337 500
5. 1428 11. 7712 17. 39 934 23. 169 422 29. 915 264
6. 1558 12. 40 086 18. 70 952 24. 191 430 30. 1 203 000

EXERCISE 2d (p. 15)

Checks other than the estimate should be encouraged, e.g. is it even or odd, does it end in zero or five?

1. 2400 13. 60 000 25. 7200, 6612 37. 24 000, 22 222
2. 900 14. 300 000 26. 40 000, 42 987 38. 560 000, 563 997
3. 3200 15. 300 000, 244 326 27. 50 000, 46 657 39. 25 000, 23 124
4. 1500 16. 300 000, 11 136 28. 600 000, 579 424 40. 35 000, 35 972
5. 900 17. 12 000, 10 192 29. 30 000, 298 717 41. 24 000, 23 458
6. 1200 18. 12 000, 10 192 30. 30 000, 298 717 42. 200 000, 231 548
7. 1200 19. 36 000, 34 225 31. 5600, 5382 43. 480 000, 465 234
8. 3600 20. 16 000, 18 768 32. 45 000, 40 091 44. 4 900 000, 5 053 014
9. 3000 21. 7200, 7098 33. 54 000, 51 888 45. 350 000, 346 320
10. 15 000 22. 6000, 8750 34. 1000, 846
11. 18 000 23. 30 000, 32 406 35. 6000, 6076
12. 24 000 24. 30 000, 30 012 36. 45 000, 40 281

EXERCISE 2e (p. 16)

If it has not been done earlier, this is an appropriate place to introduce the more able pupils to a more formal setting down of answers.

1. 8188 3. 272 5. 22 500 7. 2592 9. 792
2. 10 896 4. 840 6. 1428 8. 420 10. 672

EXERCISE 2f (p. 18)

Not intended for use with a calculator.

1. 29 10. 13 r4 19. 201 r2 28. 85 37. 1479 r4
2. 14 11. 9 r6 20. 124 r1 29. 121 r3 38. 2193
3. 6 12. 12 r1 21. 171 30. 140 r2 39. 1214
4. 19 13. 13 22. 231 31. 1167 40. 287
5. 18 14. 2 r3 23. 103 32. 440 r3 41. 198 r6
6. 48 r1 15. 13 24. 71 r3 33. 2414 r1 42. 183
7. 14 r3 16. 27 25. 24 34. 351 r3 43. 354 r3
8. 20 r3 17. 213 26. 32 r6 35. 428 44. 1727 r2
9. 23 18. 274 27. 81 r3 36. 1067 r3 45. 1501

EXERCISE 2g (p. 19)

Not intended for use with a calculator.

1. 25 r6 4. 27 r83 7. 18 r6 9. 9 r426 11. 30 r77
EXERCISE 2h (p. 19)
Not intended for use with a calculator.

1. 12 r14 13. 215 r9 25. 304 r19 37. 2 r33 49. 7 r87
2. 52 r9 14. 348 r7 26. 573 r7 38. 107 r17 50. 26 r15
3. 18 r1 15. 246 r28 27. 96 r28 39. 111 r13 51. 24 r65
4. 34 r12 16. 456 r1 28. 64 r8 40. 190 r20 52. 32 r200
5. 20 r14 17. 127 r22 29. 202 r22 41. 25 r0 53. 12 r6
6. 8 r11 18. 86 r28 30. 89 r24 42. 111 r5 54. 56 r91
7. 35 r0 19. 75 r0 31. 200 r13 43. 90 r30 55. 25 r75
8. 16 r13 20. 120 r21 32. 65 r14 44. 200 r0 56. 20 r110
9. 16 r21 21. 221 r0 33. 83 r29 45. 11 r6 57. 6 r142
10. 21 r4 22. 135 r24 34. 146 r34 46. 20 r10 58. 74 r44
 11. 28 r13 23. 236 r0 35. 77 r9 47. 20 r4 59. 27 r109
 12. 22 r20 24. 217 r15 36. 469 r1 48. 42 r38 60. 22 r152

EXERCISE 2i (p. 21)
Not intended for use with a calculator. If calculators are used to check answers, tuition on
their use for mixed operations will be needed and will vary with the type of calculator used.
A simple four-function calculator does not usually give priority to \times and \div but a scientific
calculator usually does and if pupils have a calculator with this facility it should be used.

1. 18 9. 7 17. 3 25. 6 33. 12
2. 0 10. 21 18. 13 26. 8 34. 13
3. 12 11. 9 19. 26 27. 10 35. 32
4. 19 12. 17 20. 6 28. 8 36. 9
5. 0 13. 2 21. 8 29. 5 37. 16
6. 5 14. 5 22. 22 30. 9 38. 14
7. 22 15. 1 23. 13 31. 21 39. 14
8. 7 16. 10 24. 17 32. 14 40. 30

EXERCISE 2j (p. 22)
Not for use with a calculator.

1. 2 7. 49 13. 17 19. 4 25. 10
2. 56 8. 2 14. 2 20. 36 26. 1
3. 9 9. 45 15. 11 21. 45 27. 4
4. 14 10. 2 16. 7 22. 6 28. 25
5. 15 11. 17 17. 30 23. 14 29. 1
6. 8 12. 3 18. 1 24. 0 30. 18

EXERCISE 2k (p. 23)
Intended for the above average; with the others it should be approached with caution or
omitted.

1. 6 and 2p over 16. 9p, 18p, 33p
2. 68p 17. 412p (or £4.12)
3. 14
4. 18
5. 8p
6. 15p
7. 150 miles
8. 74
9. £1.45
10. 16 and 2kg over
11. 76
12. 40p
13. 20p
14. 90
15. 840cm

18. £21
19. 225 275
20. 54 (one not full)
21. 67
22. 1831 or 1832 depending on her birth date
23. 26
24. 124
25. 600m
26. 12min
27. 15
28. 15p
29. 34
30. 1h; 25min

EXERCISE 21 (p. 26)
Gives interesting variations on straightforward arithmetic.

1.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
</tr>
</tbody>
</table>

2.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>6</td>
</tr>
</tbody>
</table>

3.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>14</td>
<td>7</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>12</td>
<td>1</td>
<td>13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. 9, 11
6. 13, 16
7. 4, 2
8. 17, 21
9. 32, 64
10. 15, 18
11. 4, 2
12. 81, 243
13. 36, 49
14. 10 000, 100 000
15. 45, 36
16. 19, 23
17. 37, 50

18.

\[1 + 3 + 5 + 7 + 9 = 25 = 5 \times 5\]
\[1 + 3 + 5 + 7 + 9 + 11 = 36 = 6 \times 6\]
\[1 + 3 + 5 + 7 + 9 + 11 + 13 = 49 = 7 \times 7\]
a) 64
b) 400

19.

\[2 + 4 + 6 + 8 + 10 = 30 = 5 \times 6\]
\[2 + 4 + 6 + 8 + 10 + 12 = 42 = 6 \times 7\]
\[2 + 4 + 6 + 8 + 10 + 12 + 14 = 56 = 7 \times 8\]

20.

\[1 + 5 + 10 + 10 + 5 + 1 = 36 \times 1\]
\[1 + 6 + 15 + 20 + 15 + 6 + 1 = 72 \times 1\]

21. 35

22.

\[1, 4, 9, 16\]
\[25\]
\[36, 49\]
\[7, 9\]
\[2, 3, 4, 5, 6, 7\]
\[1, 1, 1, 1\]

23. a) 1, 3, 6, 10, 15, 21, 28
 b) 2, 3, 4, 5, 6, 7
 c) 1, 1, 1, 1, 1

24. a) 1, 3, 6, 10, 15, 21, 28
 b) 2, 4, 8, ..., 38, ...
 c) 1, 2, 4, 8, ..., 32, ...

25. a) (i) 20, 24, 28
 (ii) 4
 (iii) 0
 b) (i) 24, 29, 34
 (ii) 5
 (iii) 0
 c) (i) 32, 64, 128
 (ii) 2, 4, 8, 16, 32, 64
 (iii) 2, 4, 8, 16, 32

26.

\[1, 5, 10, 10, 5, 1 = 40 \times 1\]
\[1, 6, 15, 20, 15, 6, 1 = 66 \times 1\]
\[1, 7, 21, 35, 35, 21, 7, 1 = 120 \times 1\]
d) (i) 162, 486, 1458 (ii) 4, 12, 36, 108, 324, 972 (iii) 8, 24, 72, 216, 648

in (ii) and (iii), multiply by 3 each time

29. 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

30. 1, 2, 4, 8, 32, 256, 8192, ...

31. 15 and 33. ...add 6 each time

32. 1 and ¼. ...divide by 2 each time

33. 3 and 9. ...multiply by 3 each time

34. a) 9 b) 15

35. a) 15 b) 36

EXERCISE 2m (p. 30)
1. 1005 3. 684 5. 6608 7. 242 9. 6 (10p over)
2. 17 4. 28 6. 1018 8. 7 10. 46p

EXERCISE 2n (p. 30)
1. 870 3. 672 5. 29 7. 50 9. 7 (3 left)
2. 54 4. 9 r7 6. 118 8. 37 10. 5

EXERCISE 2p (p. 31)
1. 2304 3. 413 5. 277 r8 7. 260 9. 35, 45
2. 263 4. 3392 6. 393 r3 8. 19 r133 10. 33

EXERCISE 2q (p. 31)
1. 3133 3. 8200 5. 278 r1 7. 3 9. 34p
2. 169 4. 4544 6. 713 8. 132

CHAPTER 3 Fractions: Addition and Subtraction

EXERCISE 3a (p. 33)
1. 1/6 5. 2/6 9. 1/2 13. 1/7
2. 3/6 6. 7/10 10. 3/10 14. 2/6
3. 1/3 7. 1/4 11. 5/12 15. 1/8
4. 3/6 8. 3/4 12. 1/4 16. 1/6

EXERCISE 3b (p. 34)
This may be used for discussion.

1. a) 1/60 b) 9/60 c) 30/60 d) 45/60 11. 150/500
2. 5/7 12. 45/120
3. 11/31 13. 37/3600
4. 51/305 14. 35/80
5. 35/100 15. a) 10/32 b) 8/32 c) 25/32
6. 90/500 16. 15/40 25/40
7. 26/180 17. a) 20/62 b) 10/62 c) 48/62
8. 3/31 18. a) 12/37 b) 8/37 c) 20/37
9. \(\frac{12}{61} \)
10. \(\frac{5}{27} \)

EXERCISE 3e (p. 37)

7. 6
8. 4
9. 21
10. 36
11. 18
12. 4
13. 15
14. 12
15. 100
16. 6
17. 16
18. 18
19. 18
20. 30
21. 10
22. 10
23. 100
24. 8
25. 300
26. 110
27. 40
28. 1000
29. 90
30. 8000

34. a) \(\frac{12}{23} \)
b) \(\frac{8}{24} \)
c) \(\frac{4}{24} \)
d) \(\frac{18}{34} \)
e) \(\frac{10}{25} \)
f) \(\frac{9}{34} \)

35. a) \(\frac{6}{45} \)
b) \(\frac{20}{45} \)
c) \(\frac{27}{45} \)
d) \(\frac{15}{45} \)
e) \(\frac{45}{45} \)
f) \(\frac{9}{45} \)

36. a) \(\frac{22}{35} \)
b) \(\frac{20}{35} \)
c) \(\frac{6}{35} \)
d) \(\frac{10}{35} \)
e) \(\frac{24}{35} \)
f) \(\frac{24}{35} \)

37. a) \(\frac{12}{72} \)
b) \(\frac{12}{18} \)
c) \(\frac{12}{12} \)
d) \(\frac{12}{18} \)
e) \(\frac{12}{18} \)
f) \(\frac{12}{18} \)

38. b) \(\frac{2}{3} = \frac{6}{9} \)
e) \(\frac{7}{10} = \frac{20}{100} \)

EXERCISE 3d (p. 38)

1. \(\frac{1}{2} \)
2. \(\frac{5}{6} \)
3. \(\frac{4}{5} \)
4. \(\frac{2}{3} \)
5. \(\frac{3}{8} \)
6. \(\frac{1}{4} \)
7. \(\frac{7}{9} \)
8. \(\frac{5}{6} \)
9. \(\frac{3}{4} \)
10. \(\frac{4}{5} \)
11. \(\frac{3}{5} \)
12. \(\frac{3}{5} \)
13. \(\frac{1}{11} \)
14. \(\frac{4}{5} \)
15. \(\frac{5}{11} \)
16. \(\frac{4}{11} \)
17. \(\frac{7}{9} \)
18. \(\frac{5}{8} \)
19. \(\frac{3}{11} \)
20. \(\frac{7}{9} \)
21. \(\frac{6}{11} \)
22. \(\frac{3}{5} \)
23. \(\frac{1}{5} \)
24. \(\frac{5}{6} \)
25. \(\frac{5}{8} \)
26. \(\frac{2}{3} \)
27. \(\frac{27}{20} \)
28. \(\frac{19}{20} \)
29. \(\frac{5}{6} \)
30. \(\frac{5}{6} \)
31. \(\frac{5}{6} \)
32. \(\frac{5}{6} \)
33. \(\frac{5}{6} \)
34. \(\frac{5}{6} \)
35. \(\frac{5}{6} \)
36. \(\frac{5}{6} \)
37. \(\frac{7}{9} \)
38. \(\frac{4}{9} \)
39. \(\frac{1}{3} \)
40. \(\frac{3}{8} \)
41. \(\frac{1}{4} \)
42. \(\frac{2}{5} \)
43. \(\frac{5}{6} \)
44. \(\frac{3}{5} \)
45. \(\frac{1}{4} \)
46. \(\frac{3}{5} \)
47. \(\frac{3}{4} \)
48. \(\frac{5}{9} \)

Simplifying fractions: this is the first time that the word “factor” is used. It will need explanation and much discussion to clarify its meaning, e.g. is 2 a factor of 14; what are the factors of 6? Factors are discussed again in Chapter 12, and Exercise 12a could be done now. Children not familiar with simplifying fractions need a lot of discussion before they do any themselves. Discussion of the other words used for simplifying is needed, i.e. reducing and cancelling. (Cancelling really means the act of removing the common factors.)

EXERCISE 3e (p. 42)

1. \(\frac{1}{3} \)
2. \(\frac{7}{3} \)
3. \(\frac{1}{5} \)
4. \(\frac{1}{5} \)
5. \(\frac{2}{5} \)
6. \(\frac{3}{5} \)
7. \(\frac{4}{5} \)
8. \(\frac{5}{5} \)
9. \(\frac{6}{5} \)
10. \(\frac{7}{5} \)
11. \(\frac{8}{5} \)
12. \(\frac{9}{5} \)
13. \(\frac{10}{5} \)
14. \(\frac{11}{5} \)
15. \(\frac{12}{5} \)
16. \(\frac{13}{5} \)
17. \(\frac{14}{5} \)
18. \(\frac{15}{5} \)
19. \(\frac{16}{5} \)
20. \(\frac{17}{5} \)
21. \(\frac{18}{5} \)
22. \(\frac{19}{5} \)
23. \(\frac{20}{5} \)
24. \(\frac{21}{5} \)
25. \(\frac{22}{5} \)
26. \(\frac{23}{5} \)
27. \(\frac{24}{5} \)
28. \(\frac{25}{5} \)
29. \(\frac{26}{5} \)
30. \(\frac{27}{5} \)
31. \(\frac{28}{5} \)
32. \(\frac{29}{5} \)
33. \(\frac{30}{5} \)
34. \(\frac{31}{5} \)
35. \(\frac{32}{5} \)
36. \(\frac{33}{5} \)
37. \(\frac{34}{5} \)
38. \(\frac{35}{5} \)
39. \(\frac{36}{5} \)
40. \(\frac{37}{5} \)
Addition and subtraction of fractions: many pupils try to add or subtract at the same time as changing denominators and are then baffled by their inevitable mistakes. This is a case where they should be encouraged to write down each step, as shown in the worked examples, so that they separate the two operations.
EXERCISE 3i (p. 49)

1. $\frac{3}{8}$
2. $\frac{5}{7}$
3. $\frac{1}{10}$
4. $\frac{5}{12}$
5. $\frac{6}{50}$
6. $\frac{5}{17}$
7. $\frac{3}{9}$
8. $\frac{12}{1}$
9. $\frac{50}{9}$
10. $\frac{2}{1}$
11. $\frac{3}{4}$
12. $\frac{1}{2}$
13. $\frac{1}{18}$
14. $\frac{1}{12}$
15. $\frac{1}{5}$
16. $\frac{1}{17}$
17. $\frac{5}{7}$
18. $\frac{5}{18}$
19. $\frac{2}{9}$
20. $\frac{1}{3}$

EXERCISE 3j (p. 50) Intended for the above average; can be used for discussion with others.

1. $\frac{13}{15}$, $\frac{2}{15}$
2. $\frac{11}{17}$, $\frac{4}{17}$
3. $\frac{1}{7}$, $\frac{1}{17}$
4. $\frac{3}{8}$, $\frac{7}{8}$
5. $\frac{11}{10}$, $\frac{10}{7}$, $\frac{7}{10}$

EXERCISE 3k (p. 52)

1. $2\frac{1}{4}$
2. $4\frac{3}{8}$
3. $6\frac{1}{6}$
4. $5\frac{3}{10}$
5. $9\frac{2}{9}$
6. $3\frac{1}{2}$
7. $6\frac{1}{2}$
8. $5\frac{1}{8}$
9. $25\frac{2}{3}$
10. $10\frac{4}{17}$
11. $13\frac{5}{8}$
12. $6\frac{6}{7}$
13. $13\frac{4}{5}$
14. $15\frac{1}{6}$
15. $7\frac{11}{17}$
16. $12\frac{5}{6}$
17. $13\frac{2}{5}$
18. $13\frac{2}{5}$
19. $24\frac{1}{2}$
20. $4\frac{9}{10}$

EXERCISE 3l (p. 52)

1. $\frac{13}{17}$
2. $\frac{8}{13}$
3. $\frac{57}{9}$
4. $\frac{45}{17}$
5. $\frac{5}{216}$
6. $\frac{33}{17}$
7. $\frac{20}{11}$
8. $\frac{25}{6}$
9. $\frac{11}{3}$
10. $\frac{11}{2}$
11. $\frac{27}{4}$
12. $\frac{22}{9}$
13. $\frac{19}{7}$
14. $\frac{43}{9}$
15. $\frac{55}{14}$
16. $\frac{23}{7}$
17. $\frac{19}{10}$
18. $\frac{20}{3}$
19. $\frac{59}{7}$
20. $\frac{101}{10}$

EXERCISE 3m (p. 53)

1. $5\frac{1}{9}$
2. $6\frac{1}{6}$
3. $4\frac{4}{11}$
4. $2\frac{1}{2}$
5. $16\frac{2}{3}$
6. $7\frac{1}{4}$
7. $13\frac{2}{3}$
8. $7\frac{1}{9}$
9. $8\frac{1}{6}$
10. $10\frac{7}{10}$
11. $7\frac{2}{9}$

EXERCISE 3n (p. 54)

Again it is important to encourage the writing down of each step so that only one operation is performed at a time.

1. $5\frac{3}{4}$
2. $3\frac{5}{9}$
3. $5\frac{23}{40}$
4. $9\frac{4}{9}$
5. $5\frac{29}{36}$
6. $4\frac{1}{6}$
7. $4\frac{9}{20}$
8. $3\frac{1}{14}$
9. $7\frac{2}{10}$
10. $13\frac{17}{21}$
11. $10\frac{12}{16}$
12. $6\frac{1}{3}$
13. $11\frac{3}{14}$
14. $8\frac{1}{10}$
15. $12\frac{1}{10}$
16. $11\frac{9}{10}$
17. $8\frac{1}{10}$
18. $18\frac{1}{2}$
19. $10\frac{1}{10}$
20. $11\frac{1}{5}$
21. $11\frac{1}{2}$
22. $17\frac{1}{7}$
23. $17\frac{1}{10}$
24. $21\frac{1}{18}$
25. $15\frac{2}{5}$
26. $15\frac{4}{9}$
27. $14\frac{51}{100}$
28. $17\frac{11}{32}$
29. $22\frac{2}{7}$
30. $22\frac{1}{2}$
EXERCISE 3p (p. 56)

1. \(1 \frac{5}{8} \)
2. \(1 \frac{11}{15} \)
3. \(1 \frac{2}{5} \)
4. \(\frac{3}{4} \)
5. \(5 \frac{5}{12} \)
6. \(1 \frac{1}{2} \)
7. \(1 \frac{5}{14} \)
8. \(2 \frac{1}{10} \)
9. \(1 \frac{7}{19} \)
10. \(3 \frac{14}{33} \)
11. \(2 \frac{3}{15} \)
12. \(3 \frac{1}{4} \)
13. \(3 \frac{3}{10} \)
14. \(2 \frac{1}{11} \)
15. \(3 \frac{7}{24} \)
16. \(2 \frac{3}{10} \)
17. \(1 \frac{7}{8} \)
18. \(3 \frac{7}{20} \)
19. \(3 \frac{9}{15} \)
20. \(6 \frac{1}{33} \)
21. \(3 \frac{1}{29} \)
22. \(1 \frac{5}{8} \)
23. \(\frac{1}{4} \)
24. \(1 \frac{7}{15} \)
25. \(1 \frac{3}{8} \)
26. \(2 \frac{7}{10} \)
27. \(3 \frac{1}{2} \)
28. \(2 \frac{1}{2} \)
29. \(7 \frac{1}{9} \)
30. \(1 \frac{7}{9} \)
31. \(2 \frac{5}{7} \)
32. \(2 \frac{7}{8} \)
33. \(3 \frac{16}{17} \)
34. \(\frac{2}{3} \)
35. \(1 \frac{1}{2} \)
36. \(2 \frac{16}{31} \)

EXERCISE 3q (p. 56)

1. a) \(2 \frac{1}{3} \)
 b) \(\frac{11}{24} \)
 c) \(\frac{35}{82} \)
 d) \(2 \frac{1}{6} \)
 e) \(\frac{11}{12} \)
2. a) \(2 \frac{1}{4} \)
 b) \(3 \frac{1}{2} \)
3. a) \(\frac{3}{7} \)
 b) \(\frac{17}{30} \)
4. a) \(\frac{3}{2} \), \(\frac{1}{3} \), \(\frac{13}{20} \), \(\frac{7}{10} \)
 b) \(\frac{3}{12} \), \(\frac{7}{12} \), \(\frac{3}{12} \), \(\frac{5}{6} \)
 c) \(\frac{3}{2} \), \(\frac{7}{10} \), \(\frac{31}{100} \), \(\frac{17}{20} \)
5. a) \(< \)
 b) \(> \)
 c) \(> \)
6. a) \(\frac{3}{17} \)
 b) \(\frac{1}{7} \)
 c) \(\frac{9}{17} \)

EXERCISE 3r (p. 57)

1. a) \(\frac{2}{15} \)
 b) \(1 \frac{7}{10} \)
 c) \(\frac{3}{22} \)
 d) \(6 \frac{7}{12} \)
 e) \(\frac{1}{2} \)
 f) \(2 \frac{13}{30} \)
2. a) \(\frac{7}{8} \)
 b) \(1 \frac{5}{6} \)
 c) \(\frac{12}{13} \)
3. a) \(\frac{13}{100} \)
 b) \(\frac{333}{566} \)
4. a) \(> \)
 b) \(< \)
 c) \(< \)
5. a) \(\frac{3}{10} \), \(\frac{7}{20} \), \(\frac{7}{8} \)
 b) \(\frac{3}{10} \), \(\frac{7}{12} \)
 c) \(\frac{3}{12} \), \(\frac{3}{10} \), \(\frac{5}{8} \), \(\frac{1}{4} \)
6. a) \(\frac{16}{26} \)
 b) \(\frac{7}{9} \)

EXERCISE 3s (p. 57)

1. a) \(\frac{41}{140} \)
 b) \(\frac{17}{45} \)
 c) \(\frac{1}{8} \)
 d) \(3 \frac{13}{15} \)
 e) \(0 \)
 f) \(5 \)
2. a) \(1 \frac{3}{8} \)
 b) \(2 \frac{3}{5} \)
 c) \(\frac{5}{16} \)
3. a) \(< \)
 b) \(< \)
4. a) \(\frac{1}{2} \), \(\frac{3}{5} \), \(\frac{3}{4} \), \(\frac{5}{6} \)
 b) \(\frac{1}{2} \), \(\frac{5}{6} \), \(\frac{3}{4} \), \(\frac{5}{8} \)
5. a) \(\frac{7}{40} \)
 b) \(\frac{1}{7} \)
 c) \(\frac{28}{49} \)
6. a) \(\frac{17}{19} \)
 b) \(\frac{13}{19} \)

EXERCISE 3t (p. 58)

1. a) \(1 \frac{1}{5} \)
 b) \(\frac{3}{5} \)
 c) \(1 \frac{11}{14} \)
 d) \(2 \frac{9}{20} \)
 e) \(\frac{11}{12} \)
 f) \(3 \frac{2}{5} \)
2. a) \(4 \frac{1}{8} \)
 b) \(\frac{1}{8} \)
 c) \(2 \frac{4}{7} \)
3. a) \(\frac{5}{24} \)
 b) \(\frac{1}{10} \)
 c) \(\frac{5}{12} \)

4. a) \(> \)
 b) \(< \)

5. a) \(\frac{5}{11}, \frac{1}{2}, \frac{23}{44}, \frac{13}{22} \)
 b) \(\frac{5}{6}, \frac{7}{12}, \frac{3}{8}, \frac{3}{4} \)

6. a) \(\frac{1}{5} \)
 b) \(\frac{8}{15} \)
 c) \(\frac{1}{3} \)

CHAPTER 4 Fractions: Multiplication and Division

If pupils have not done multiplication of fractions before, much classroom discussion is advisable, using cake diagrams, rectangles, etc., to get across the meaning that, for example, \(\frac{1}{2} \times \frac{1}{4} \) means \(\frac{1}{2} \) of \(\frac{1}{4} \) and that \(\frac{1}{2} \times \frac{1}{4} = \frac{1}{2} \times \frac{1}{4} \).

EXERCISE 4b (p. 60)

1. \(\frac{2}{7} \)
 9. \(\frac{5}{24} \)
 16. \(\frac{2}{3} \)
 23. \(\frac{4}{11} \)
 30. \(\frac{3}{16} \)
2. \(\frac{10}{37} \)
 10. \(\frac{14}{27} \)
 17. \(\frac{1}{9} \)
 24. \(\frac{4}{17} \)
 31. \(\frac{1}{20} \)
3. \(\frac{2}{15} \)
 11. \(\frac{3}{20} \)
 18. \(\frac{15}{28} \)
 25. \(\frac{7}{9} \)
 32. \(\frac{2}{3} \)
4. \(\frac{7}{16} \)
 12. \(\frac{1}{15} \)
 19. \(\frac{7}{4} \)
 26. \(\frac{2}{17} \)
 33. \(4 \)
5. \(\frac{3}{7} \)
 13. \(\frac{1}{6} \)
 20. \(\frac{6}{7} \)
 27. \(\frac{2}{3} \)
 34. \(\frac{1}{18} \)
6. \(\frac{8}{13} \)
 14. \(\frac{5}{4} \)
 21. \(\frac{1}{17} \)
 28. \(\frac{1}{7} \)
 35. \(\frac{7}{22} \)
7. \(\frac{6}{35} \)
 15. \(\frac{7}{18} \)
 22. \(\frac{11}{10} \)
 29. \(\frac{1}{9} \)
 36. \(\frac{1}{6} \)
8. \(\frac{5}{7} \)

EXERCISE 4c (p. 61)

1. \(\frac{1}{5} \)
 7. \(\frac{2}{7} \)
 13. 30
 19. 20
 25. 23
2. 2
 8. 2
 14. 16
 20. 60
 26. 9
3. \(\frac{3}{4} \)
 9. 16
 15. 7
 21. 7
 27. 14
4. 11
 10. \(\frac{17}{21} \)
 16. 9
 22. 15
 28. 12
5. \(\frac{1}{2} \)
 11. 14
 17. 10
 23. 5
 29. 3
6. \(\frac{1}{2} \)
 12. 4
 18. 10
 24. 6
 30. 8

EXERCISE 4d (p. 63)

1. 23
 4. 37
 7. 36
 9. 120
 11. 14
2. 30
 5. 110
 8. 8
 10. 18
 12. 44
3. 12
 6. 13

EXERCISE 4e (p. 63)

1. 6
 7. 5
 13. 45 litres
 19. 15 miles
 25. 292 days
2. 6
 8. 8
 14. 33 miles
 20. 88 gallons
 26. 9h
3. 3
 9. 30
 15. 21 gallons
 21. 50p
 27. 1 day
4. 16
 10. 15
 16. 8m
 22. 8p
 28. £3
5. 10 11. 12m 17. 10 dollars 23. 30p 29. 60p
6. 6 12. 25 dollars 18. 28 litres 24. 12p 30. 21h

Division: if not already done, much discussion is necessary before deducing the “rule”.

EXERCISE 4f (p. 64)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>14</td>
<td>2.</td>
<td>20</td>
<td>3.</td>
<td>21</td>
<td>4.</td>
</tr>
<tr>
<td>7.</td>
<td>21</td>
<td>8.</td>
<td>45</td>
<td>9.</td>
<td>99</td>
<td>10.</td>
</tr>
<tr>
<td>13.</td>
<td>49</td>
<td>14.</td>
<td>99</td>
<td>15.</td>
<td>39</td>
<td>16.</td>
</tr>
<tr>
<td>19.</td>
<td>49</td>
<td>20.</td>
<td>63</td>
<td>21.</td>
<td>39</td>
<td>22.</td>
</tr>
</tbody>
</table>

EXERCISE 4g (p. 66)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>10½</td>
<td>2.</td>
<td>5/6</td>
<td>3.</td>
<td>5½</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>2⅛</td>
<td>6.</td>
<td>6½</td>
<td>7.</td>
<td>9/10</td>
<td>8.</td>
</tr>
<tr>
<td>9.</td>
<td>1⅔</td>
<td>10.</td>
<td>4</td>
<td>11.</td>
<td>6</td>
<td>12.</td>
</tr>
<tr>
<td>13.</td>
<td>12</td>
<td>14.</td>
<td>6</td>
<td>15.</td>
<td>3½</td>
<td>16.</td>
</tr>
<tr>
<td>17.</td>
<td>1⅔</td>
<td>18.</td>
<td>3</td>
<td>19.</td>
<td>1⅔</td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 4h (p. 68)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>1</td>
<td>2.</td>
<td>2½</td>
<td>3.</td>
<td>1½</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>⅗</td>
<td>5.</td>
<td>⅗</td>
<td>6.</td>
<td>2⅗</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>5½</td>
<td>8.</td>
<td>2⅓</td>
<td>9.</td>
<td>1⅓</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>1⅓</td>
<td>11.</td>
<td>1⅔</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 4i (p. 69)

Intended as extra practice for the above average.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>⅗</td>
<td>2.</td>
<td>⅗</td>
<td>3.</td>
<td>⅗</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>⅗</td>
<td>5.</td>
<td>⅗</td>
<td>6.</td>
<td>⅗</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>⅗</td>
<td>10.</td>
<td>⅗</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>⅗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>⅗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21.</td>
<td>⅗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25.</td>
<td>⅗</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 4j (p. 70)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>4⅓</td>
<td>2.</td>
<td>1⅔</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>3</td>
<td>4.</td>
<td>3⅓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>7/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>7/10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>⅗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>⅗</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. | 2⅗ |
21. | 1⅗ |
22. | 1⅕ |
23. | ⅗ |
24. | ⅗ |
25. | ⅗ |
26. | 1⅗ |
27. | ⅗ |
28. | ⅗ |
29. | ⅗ |
30. | ⅗ |
31. | ⅗ |
32. | ⅗ |
33. | ⅗ |
34. | ⅗ |
35. | ⅗ |
36. | ⅗ |
37. | ⅗ |
38. | ⅗ |
39. | ⅗ |
40. | ⅗ |
41. | ⅗ |
42. | ⅗ |
43. | ⅗ |
44. | ⅗ |
45. | ⅗ |
46. | ⅗ |
47. | ⅗ |
48. | ⅗ |
49. | ⅗ |
50. | ⅗ |
51. | ⅗ |
52. | ⅗ |
53. | ⅗ |
54. | ⅗ |
55. | ⅗ |
56. | ⅗ |
57. | ⅗ |
58. | ⅗ |
59. | ⅗ |
60. | ⅗ |
61. | ⅗ |
62. | ⅗ |
63. | ⅗ |
64. | ⅗ |
65. | ⅗ |
66. | ⅗ |
67. | ⅗ |
68. | ⅗ |
69. | ⅗ |
70. | ⅗ |
71. | ⅗ |
72. | ⅗ |
73. | ⅗ |
74. | ⅗ |
75. | ⅗ |
76. | ⅗ |
77. | ⅗ |
78. | ⅗ |
79. | ⅗ |
80. | ⅗ |
81. | ⅗ |
82. | ⅗ |
83. | ⅗ |
84. | ⅗ |
85. | ⅗ |
86. | ⅗ |
87. | ⅗ |
88. | ⅗ |
89. | ⅗ |
90. | ⅗ |
91. | ⅗ |
92. | ⅗ |
93. | ⅗ |
94. | ⅗ |
95. | ⅗ |
96. | ⅗ |
97. | ⅗ |
98. | ⅗ |
99. | ⅗ |
100. | ⅗ |
EXERCISE 4k (p. 71)
1. 30kg
2. \(\frac{7}{20} \) litres

EXERCISE 4l (p. 72)
1. a) 1 \(\frac{7}{15} \) b) 2 \(\frac{7}{5} \) c) 8 \(\frac{7}{10} \)
2. 6
3. \(\frac{5}{6} \)
4. 1 \(\frac{13}{20} \)
5. \(\frac{2}{3} \), \(\frac{7}{7} \), \(\frac{7}{10} \)
6. \(\frac{2}{9} \)
7. \(\frac{1}{2} \)
8. \(\frac{1}{5} \)
9. 18 min
10. 3 \(\frac{9}{10} \)
11. a) 27 b) 40
12. a) 2 \(\frac{3}{5} \) b) 3 \(\frac{2}{5} \) c) 5 \(\frac{2}{5} \)
13. a) T b) T c) F
14. 63 min
15. 124 \(\frac{1}{2} \) g

EXERCISE 4m (p. 73)
1. a) 15 b) 11 \(\frac{1}{5} \)
2. a) 1 \(\frac{7}{15} \) b) 4 \(\frac{11}{18} \)
3. a) < b) <
4. a) 1 \(\frac{1}{5} \) b) 9
5. \(\frac{1}{5} \), \(\frac{2}{5} \), \(\frac{7}{15} \)
6. 2
7. \(\frac{8}{17} \)
8. 125s
9. a) 24 b) 21
10. a) 3 \(\frac{1}{5} \) b) 5 \(\frac{4}{5} \) c) 6 \(\frac{1}{5} \)
11. 12 \(\frac{1}{8} \) km; \(\frac{77}{97} \)
12. 6

EXERCISE 4n (p. 74)
1. a) 2 \(\frac{32}{35} \) b) 0
2. a) 1 \(\frac{1}{5} \) b) \(\frac{4}{5} \)
3. 25 days
4. \(\frac{12}{20} \), \(\frac{1}{5} \), \(\frac{7}{10} \)
5. a) 6 \(\frac{1}{2} \) b) 17 \(\frac{1}{12} \)
6. \(\frac{8}{17} \)
7. \(\frac{1}{5} \)
8. 2 \(\frac{2}{5} \)
9. a) 7 \(\frac{1}{5} \) b) 9 \(\frac{1}{5} \) c) 10 \(\frac{3}{5} \)
10. a, b and c
11. 18 min
12. 1 \(\frac{4}{5} \) kg

CHAPTER 5 Introduction to Decimals

EXERCISE 5b (p. 77)
1. \(\frac{1}{5} \)
2. \(\frac{3}{50} \)
3. \(\frac{1}{10} \)
4. \(\frac{3}{100} \)
5. \(\frac{1}{100} \)
9. 1 \(\frac{4}{5} \)
16. \(\frac{20}{1000} \)
17. \(\frac{67}{10000} \)
18. \(\frac{17}{100} \)
19. \(\frac{71}{1000} \)
20. \(\frac{73}{100} \)
23. \(\frac{31}{1000} \)
24. \(\frac{47}{100} \)
25. \(\frac{1}{4} \)
26. \(\frac{9}{125} \)
27. \(\frac{19}{50} \)
30. \(\frac{1}{40} \)
31. \(\frac{7}{20} \)
32. \(\frac{1}{625} \)
33. \(\frac{11}{250} \)
34. \(\frac{1}{8} \)
EXERCISE 5c (p. 79)

1. 0.03
2. 0.9
3. 1.1
4. 0.002
5. 0.4
6. 1.1
7. 0.04
8. 7.8
9. 7.08
10. 0.0006
11. 4.005

EXERCISE 5d (p. 80)

1. 10.8
2. 7.55
3. 0.039
4. 3.98
5. 5.83
6. 14.04
7. 7.6
8. 2.06
9. 0.2673
10. 2.102
11. 0.00176

EXERCISE 5e (p. 81)

1. 2.5
2. 7.8
3. 18.5
4. 0.41
5. 0.0321
6. 16.87
7. 2.241
8. 0.191
9. 71.4
10. 6.65
11. 41.45
12. 6.939
13. 0.00176
14. 0.131
15. 9.12
16. 4.698
17. 2.66
18. 7.882
19. 2.772
20. 0.000197

EXERCISE 5f (p. 82)

1. 10.32
2. 6.92
3. 2.98
4. 6.6
5. 4.4
6. 100.28
7. 99.72
8. 0.014
9. 202.84
10. 17.76
11. 0.234
12. 77.62
13. 0.026
14. 3.62
15. 39.88
16. 20.026
17. 0.26
18. 0.007
19. 0.382
20. 0.000197
21. 0.00067
22. 1.1974
23. 0.000197
24. 10.52
25. 1

EXERCISE 5g (p. 85)

1. 72 000
2. 82.4
3. 0.24
4. 460
5. 3278
6. 430
7. 6.02
8. 32.06
9. 0.026
10. 32.06
11. 0.026
12. 0.00374

EXERCISE 5h (p. 85)

1. 2.772
2. 7.626
3. 0.000024
4. 0.014
5. 2.7
6. 0.068
7. 0.026
8. 0.0158
9. 0.0426
10. 0.00063
11. 0.00374
12. 0.0092
EXERCISE 5i (p. 86)

1. 0.16
2. 16
3. 7.8
4. 0.000 78
5. 1420
6. 6.8
7. 0.0163
8. 0.002
9. 0.78
10. 78 000
11. 0.24
12. 63
13. 3.2
14. 0.079
15. 0.078
16. 0.24
17. 11 100
18. 0.000 38
19. 0.000 38
20. 380 000
21. 0.000 24
22. 0.000 003
23. 4.1
24. 10.04
25. 4.2m
26. £152
27. 0.138, 1380
28. 0.16
29. 0.000 003
30. 0.0038

EXERCISE 5j (p. 86)

Designed for use without a calculator but some may benefit by using it.

1. 0.2
2. 1.6
3. 0.21
4. 2.6
5. 0.1
6. 0.19
7. 0.224
8. 3.8
9. 21.3
10. 2.51
11. 1.64
12. 0.15
13. 0.019
14. 0.000 13
15. 0.002 18
16. 0.042
17. 0.002
18. 0.000 06
19. 0.81
20. 1.06
21. 2.71
22. 0.000 04
23. 0.000 06
24. 0.019
25. 0.77
26. 2.107
27. 34. 0.000 15
28. 0.62
29. 0.037
30. 0.78
31. 0.23
32. 3.2
33. 2.56
34. 1.85
35. 1.2
36. 1.95
37. 1.01
38. 0.000 01
39. 0.019
40. 0.15
41. 0.72
42. 0.000 04
43. 0.8875
44. 1.75
45. 4.55
46. 0.000 15
47. 0.62
48. 0.0124
49. 0.125
50. 0.000 01
51. 0.037
52. 0.78
53. 0.000 015
54. 0.72
55. 0.0025
56. 0.6028
57. 0.853 75
58. 2.45
59. 0.575
60. 0.055 75
61. 3.65cm
62. 0.075
63. 7.15kg
64. 3.2cm
65. £4.50

EXERCISE 5k (p. 89)

1. 1.1
2. 0.15
3. 0.12
4. 0.45
5. 0.51
6. 3.2
7. 0.0041
8. 0.3125
9. 0.036
10. 0.0057
11. 0.0453
12. 0.0019
13. 0.019
14. 0.56
15. 0.7
16. 0.32
17. 0.32
18. 0.43
19. 0.25
20. 0.9
21. 0.56
22. 0.3
23. 0.26
24. 0.25
25. 0.25
26. 10
27. 0.625
28. 0.03
29. 0.25
30. 0.625
31. 0.5
32. 0.04
33. 0.5
34. 0.000 23
35. 0.03
36. 0.25
37. 0.625
38. 0.031 25

EXERCISE 5l (p. 89)

1. 0.25
2. 0.375
3. 0.6
4. 0.3125
5. 0.04
6. 2.8
7. 0.625
8. 0.4375
9. 0.12
10. 0.031 25

EXERCISE 5m (p. 90)

1. $\frac{1}{5}$
2. $\frac{3}{10}$
3. $\frac{4}{5}$
4. $\frac{3}{4}$
5. $\frac{3}{5}$
6. $\frac{2}{5}$
7. $\frac{8}{10}$
8. $\frac{1}{20}$
9. 0.9
10. 0.25
11. 0.8
12. 0.375
13. 0.03
14. 0.75
15. 0.625
16. 0.07
EXERCISE 5n (p. 90)

1. $\frac{1}{36}$
2. 0.009, 0.091
3. 36.87
4. 2.38
5. 0.0205
6. 3.01
7. 0.875
8. 20.72cm

EXERCISE 5p (p. 91)

1. $\frac{3}{100}$
2. 0.14
3. 27.32
4. 2.38
5. 0.06
6. 3.01
7. 0.1875
8. $\frac{2}{5}$

EXERCISE 5q (p. 91)

1. $\frac{1}{125}$
2. 0.8
3. 27.79
4. 85.04
5. 0.0086
6. £10.58
7. 0.1875
8. 4.8cm

EXERCISE 5r (p. 92)

1. 0.125
2. 6.28
3. 0.018
4. 0.000 56
5. $\frac{9}{100}$
6. 2.56
7. 2.8
8. £2.19

CHAPTER 6 Multiplication and Division of Decimals

EXERCISE 6a (p. 93)

Can be used for discussion.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.008</td>
<td>2.</td>
<td>0.01</td>
<td>3.</td>
<td>0.018</td>
</tr>
<tr>
<td>4.</td>
<td>0.06</td>
<td>5.</td>
<td>0.0003</td>
<td>6.</td>
<td>0.00004</td>
</tr>
<tr>
<td>7.</td>
<td>0.24</td>
<td>8.</td>
<td>0.00048</td>
<td>9.</td>
<td>0.0008</td>
</tr>
<tr>
<td>10.</td>
<td>0.0018</td>
<td>11.</td>
<td>0.018</td>
<td>12.</td>
<td>0.008</td>
</tr>
</tbody>
</table>

EXERCISE 6b (p. 94)

Not intended for use with a calculator but discretion is needed in Nos. 19–40.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>0.18</td>
<td>2.</td>
<td>0.0024</td>
<td>3.</td>
<td>0.018</td>
</tr>
<tr>
<td>4.</td>
<td>0.0056</td>
<td>5.</td>
<td>0.0108</td>
<td>6.</td>
<td>0.000021</td>
</tr>
<tr>
<td>7.</td>
<td>0.035</td>
<td>8.</td>
<td>4.8</td>
<td>9.</td>
<td>0.0064</td>
</tr>
<tr>
<td>10.</td>
<td>0.0018</td>
<td>11.</td>
<td>0.042</td>
<td>12.</td>
<td>0.72</td>
</tr>
<tr>
<td>13.</td>
<td>0.84</td>
<td>14.</td>
<td>0.036</td>
<td>15.</td>
<td>8.1</td>
</tr>
<tr>
<td>16.</td>
<td>0.0088</td>
<td>17.</td>
<td>0.077</td>
<td>18.</td>
<td>0.28</td>
</tr>
<tr>
<td>19.</td>
<td>0.1502</td>
<td>20.</td>
<td>1.6</td>
<td>21.</td>
<td>1.4</td>
</tr>
<tr>
<td>22.</td>
<td>0.000912</td>
<td>23.</td>
<td>240</td>
<td>24.</td>
<td>63</td>
</tr>
<tr>
<td>25.</td>
<td>0.112</td>
<td>26.</td>
<td>2.048</td>
<td>27.</td>
<td>22.4</td>
</tr>
<tr>
<td>28.</td>
<td>0.0022</td>
<td>29.</td>
<td>0.03</td>
<td>30.</td>
<td>0.01408</td>
</tr>
<tr>
<td>31.</td>
<td>0.64</td>
<td>32.</td>
<td>0.8</td>
<td>33.</td>
<td>0.64</td>
</tr>
<tr>
<td>34.</td>
<td>0.0008</td>
<td>35.</td>
<td>6.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36.</td>
<td>0.08</td>
<td>37.</td>
<td>0.00000064</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38.</td>
<td>800</td>
<td>39.</td>
<td>0.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.</td>
<td>0.008</td>
<td>41.</td>
<td>0.0432</td>
<td></td>
<td></td>
</tr>
<tr>
<td>42.</td>
<td>12.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 6c (p. 95)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6.72</td>
<td>2.</td>
<td>12.48</td>
<td>3.</td>
<td>0.0952</td>
</tr>
<tr>
<td>4.</td>
<td>1253.2</td>
<td>5.</td>
<td>434</td>
<td>6.</td>
<td>0.4536</td>
</tr>
<tr>
<td>7.</td>
<td>33</td>
<td>8.</td>
<td>0.0002788</td>
<td>9.</td>
<td>7476</td>
</tr>
<tr>
<td>10.</td>
<td>118.4</td>
<td>11.</td>
<td>8.97</td>
<td>12.</td>
<td>198</td>
</tr>
<tr>
<td>13.</td>
<td>64.8</td>
<td>14.</td>
<td>0.11152</td>
<td>15.</td>
<td>0.002592</td>
</tr>
<tr>
<td>16.</td>
<td>2.56</td>
<td>17.</td>
<td>2.56</td>
<td>18.</td>
<td>2.56</td>
</tr>
<tr>
<td>19.</td>
<td>0.0784</td>
<td>20.</td>
<td>0.1054</td>
<td>21.</td>
<td>1.722</td>
</tr>
<tr>
<td>22.</td>
<td>17.29</td>
<td>23.</td>
<td>22.96</td>
<td>24.</td>
<td>0.03102</td>
</tr>
</tbody>
</table>
EXERCISE 6d (p. 96)

1. £325
2. 4.4cm
3. 3.8kg
4. 16.8cm
5. 4216p or £42.16
6. 0.24
7. 3.25m
8. 50.4m

Recurring decimals: not necessary at this stage and can well be omitted with average ability pupils.

EXERCISE 6e (p. 97)
For above average pupils only.

1. 0.233... 0.23
2. 0.002 727... 0.0027
3. 0.571 428 571... 0.571 428
4. 0.143 33... 0.143
5. 0.004 285 714 28... 0.004 285 71
6. 0.1222... 0.12
7. 0.444... 0.4
8. 0.666... 0.6
9. 0.1818... 0.18
10. 0.714 285 714... 0.004 285 71
11. 0.777... 0.7
12. 1.142 857 1428... 1.142 857

EXERCISE 6f (p. 99)
Discussion about quantities that can be given exactly, quantities that cannot be given exactly (e.g. measurements), quantities that can be given exactly but often are not (e.g. government statistics) is useful here.

1. 0.33
2. 0.32
3. 1.27
4. 2.35
5. 0.04
6. 0.69
7. 0.84
8. 3.39
9. 0.01
10. 4.00
12. 6
13. 27
14. 3
15. 4
16. 7
17. 110
18. 6
19. 74
20. 4
21. 0.363
22. 0.026
23. 0.007
24. 0.070
25. 0.001
26. 0.084
27. 0.084
28. 0.325
29. 0.033
30. 4.000
31. 1.8
32. 0.007
33. 1.01
34. 0.0094
35. 0.735
36. 1.64
37. 1.6
38. 2
39. 3.50
40. 3.5

EXERCISE 6g (p. 100)
Calculators should be used except by the brightest children who should use them only for checking answers. At this point they will need to be shown how to give an answer correct to a specified number of decimal places, by reading the display to one more place than necessary.

1. 0.17 (0.165)
2. 0.93 (0.927)
3. 0.35 (0.346)
4. 2.03 (3)
5. 2.85 (3)
6. 0.16 (0.156)
7. 0.04 (2)
8. 0.05 (0.047)
9. 0.24 (0.236)
10. 0.04 (0.038)
11. 0.22 (0.216)
12. 0.95 (0.949)
13. 4.1 (1)
14. 57.4 (2)
15. 2.6 (2.55)
16. 0.9 (0.88)
17. 7.3 (7.29)
18. 1.2 (1.15)
19. 2.1 (4)
20. 0.9 (4)
21. 9.7 (9.68)
22. 0.6 (4)
23. 1.7 (3)
24. 27.3 (1)
25. 0.006 (0.0057)
26. 0.018 (0.0175)
27. 0.417 (0.4166)
28. 0.021 (0.0209)
29. 0.038 (0.0375)
30. 0.001 (0.0009)
31. 0.028 (4)
32. 0.031 (0.0306)
33. 0.016 (1)
34. 0.019 (0.0188)
35. 0.039 (3)
36. 0.037 (0.0366)
EXERCISE 6h (p. 101)
Calculators should be used by all except the most able who can use them for checking.

1. 0.625 7. 0.0625 13. 0.167 (0.1666) 19. 0.333 (3) 25. 0.158 (0.1578)
2. 0.075 8. 1.375 14. 0.667 (0.6666) 20. 0.364 (0.3636) 26. 0.176 (4)
3. 0.1875 9. 0.52 15. 0.818 (1) 21. 0.214 (2) 27. 0.267 (0.2666)
4. 0.6 10. 0.0375 16. 0.857 (1) 22. 0.235 (2) 28. 0.389 (0.3888)
5. 0.36 11. 0.429 (0.4285) 17. 1.143 (1.1428) 23. 0.462 (1) 29. 0.136 (3)
6. 0.14 12. 0.444 (4) 18. 0.111 (1) 24. 0.190 (4) 30. 0.121 (2)

Division by decimals: much class discussion is necessary before pupils are asked to work on their own.

EXERCISE 6i (p. 102)
Nos. 1–24 do not need a calculator. Nos. 25–36: benefit will be obtained from using a calculator but pupils need to be shown how to get an estimate.

1. 0.2 9. 60 16. 0.01 23. 0.004 30. 3.2
2. 0.02 10. 5 17. 100 24. 60 31. 1.2
3. 8 11. 13 18. 2.3 25. 0.8 32. 41
4. 20 12. 120 19. 21 26. 900 33. 7
5. 4500 13. 800 20. 0.012 27. 0.31 34. 1.2
6. 12 14. 360 21. 0.001 71 28. 0.16 35. 9
7. 0.16 15. 0.012 22. 52 000 29. 24.5 36. 0.08
8. 6

EXERCISE 6j (p. 103)
Unless long division practice is required, all pupils should use a calculator.

1. 6.33 (3) 11. 0.02 (0) 21. 36 (35.5)
2. 8.43 (8.428) 12. 2.9 (2.87) 22. 3.9 (3.86)
3. 16.67 (16.666) 13. 8.2 (8.18) 23. 0.167 (0.1666)
4. 28.17 (28.165) 14. 0.087 (0.0866) 24. 1.1 (1.09)
5. 0.72 (3) 15. 1.3333 (3) 25. 2.3 (2.28)
6. 41.67 (41.666) 16. 32.9 (32.85) 26. 4 (3.7)
7. 0.03 (0.026) 17. 20.3 (20.25) 27. 0.72 (3)
8. 0.93 (0.928) 18. 0.032 (3) 28. 0.0042 (0.004 15)
9. 1.03 (1.028) 19. 283.333 (3) 29. 0.57 (1)
10. 0.71 (4) 20. 1.7 (1) 30. 2.5 (2.47)

EXERCISE 6k (p. 104)
Calculators can be used, the brightest pupils using them only for checking.

1. 0.144 6. 5.76 10. 4.2 14. 0.16 18. 0.12
2. 1.6 7. 0.000 126 11. 12.24 15. 4 19. 0.125
3. 0.0512 8. 0.14 12. 84 16. 4 20. 0.7
4. 128 9. 6.72 13. 0.3 17. 10 21. 12
5. 2.88
EXERCISE 6l (p. 105)
Calculations should be used, except possibly by the most able.

1. $0.2, \frac{1}{3}$
2. $\frac{2}{3}, \frac{4}{5}$
3. $\frac{4}{9}, \frac{1}{2}$
4. $\frac{17}{11}, 0.3$
5. $\frac{7}{9}, 0.1$
6. $3, 0.3$
7. $3, 0.35$
8. $9, 0.4$
9. $3, 0.3$
10. $0.35, \frac{25}{11}$

EXERCISE 6m (p. 106)

1. a) 6.8 b) 680
2. 0.875
3. a) 3.13 b) 0.08
4. 20.138
5. 4.48
6. 1.64
7. 11.82
8. $6\frac{2}{3}, (6\frac{2}{3} = 6.666...)$

EXERCISE 6n (p. 106)

1. $\frac{1}{30}$
2. a) 0.0624 b) 0.52
3. 1.7
4. 6.4cm
5. 0.048
6. 0.24
7. £55.68
8. a) 8 b) 7.8 c) 7.782

EXERCISE 6p (p. 107)

1. 0.714285
2. $0.064, 0.00064$
3. 16.28
4. $\frac{21}{20}$
5. 7.4437
6. 2.05
7. $\frac{2}{7}$

EXERCISE 6q (p. 107)

1. 0.16
2. $9.186 (9.1857)$
3. 0.0036
4. $\frac{19}{2000}$
5. 14.63
6. $59.5p$
7. 2
8. $0.666…$

CHAPTER 7 Units

Calculators are not necessary for this chapter.

EXERCISE 7a (p. 108)
A good opportunity to point out the importance of eyes being directly over each end of a line when using a ruler to measure its length.

1. a) metres b) centimetres c) metres d) kilometres e) centimetres f) millimetres
2. a) 4 b) 2 c) 5 d) 1 e) 10
3. (to the nearest millimetre) a) 20 b) 10 c) 4 d) 16 e) 24
4. 40cm
5. 12000
6. 150
7. 500
8. 190000
9. 3000
10. 3000
11. 500
12. 7000
13. 150
14. 23
15. 4600
16. 3700
17. 1900
18. 3500
19. 270
20. 190000

EXERCISE 7b (p. 110)

1. 200
2. 5000
3. 30
4. 400
5. 12000
6. 150
7. 6000
8. 100000
9. 3000
10. 2000000
11. 500
12. 7000
13. 150
14. 23
15. 4600
16. 3700
17. 1900
18. 3500
19. 270
20. 190000
EXERCISE 7c (p. 111)

1. 12 000
2. 3000
3. 5000
4. 1 000 000
5. 1 000 000
6. 13 000
7. 6000
8. 2 000 000
9. 4000
10. 2 000 000
11. 3000
12. 4000
13. 1500
14. 2700
15. 1800
16. 700
17. 5 200 000
18. 600
19. 11 300
20. 2500
21. 7300
22. 300 000
23. 500
24. 800

EXERCISE 7d (p. 112)

1. 136
2. 35
3. 1050
4. 48
5. 1 000 000
6. 3020
7. 502
8. 5500
9. 202
10. 8009
11. 3500
12. 2008
13. 5500
14. 2800
15. 3250
16. 1020
17. 1250
18. 3550
19. 2050
20. 1010

EXERCISE 7e (p. 112)

1. 30
2. 6
3. 1.5
4. 25
5. 1.6
6. 0.072
7. 0.12
8. 8.8
9. 1.25
10. 2.85
11. 1.5
12. 3.68
13. 1.5
14. 5.02
15. 3.8
16. 0.086
17. 0.56
18. 0.028
19. 0.19
20. 0.086
21. 3.45
22. 8.4
23. 11.002
24. 2.042
25. 4.4
26. 5.03
27. 7.005
28. 4.005
29. 1.001
30. 0.000 085
31. 5.142
32. 48.171
33. 9.008
34. 9.088
35. 12.019
36. 4.111
37. 1.056
38. 5.003
39. 0.2505
40. 0.85055

EXERCISE 7f (p. 114)

Worth pointing out to those of above average ability that, in the worked examples, part (b)
can be obtained directly from part (a).

1. 5.86
2. 1.035
3. 3001.36
4. 3051
5. 5.647
6. 4.65
7. 440
8. 55
9. 1820
10. 2456
11. 5059
12. 1358
13. 3250
14. 5115
15. 15 100
16. 2550
17. 1046.68
18. 308.73
19. 2580
20. 2362
21. 2.22
22. 1606.4
23. 1089.6
24. 5972
25. 748
26. 0.922
27. 1150
28. 73.6
29. 2642
30. 19 850
31. 35 420
32. 910
33. 448.2
34. 5

EXERCISE 7g (p. 115)

For the above average.

1. 13 540
2. 45 792
3. 13.563
4. 12.55
5. 32
6. 10.6
7. 15 366
8. 24.448
9. 22.77
10. 16.24
EXERCISE 7h (p. 116)
Those of average ability would benefit from using a calculator.

1. 9.72m
2. 1840g
3. 748kg
4. 4.11g
5. 1080mm
6. 4kg
7. 2.2g
8. 15m
9. 33.2cm
10. 5.3kg

EXERCISE 7i (p. 117)

1. 700c
2. 600p
3. 900pf
4. 1300c
5. 735c
6. 4381c
7. 1103pf
8. 615p
9. 210p
10. 504p
11. £1.26
12. $3.50
13. £1.90
14. 3.50 marks
15. $43.07
16. £2.83
17. 3.47 marks
18. £5.80
19. 11.09f
20. £6.08
21. £3.20
22. $5.05
23. £9.60
24. 6 marks
25. £2.80

EXERCISE 7j (p. 118)
For the above average.

1. a) 98cm
2. 2.23km
3. 9.192kg
4. 3056m, 3050m
5. 3.6m
6. 95t 660kg; 121t 960kg
7. 76.9kg, 72kg
8. 13 360m, 13.64km
9. a) 6.2, 3.8
10. £6.75
11. £1.26
12. $3.50
13. £1.90
14. 3.50 marks
15. $43.07
16. £2.83
17. 3.47 marks
18. £5.80
19. 11.09f
20. £6.08
21. £3.20
22. $5.05
23. £9.60
24. 6 marks
25. £2.80

EXERCISE 7k (p. 119)

1. 4000m
2. 0.03kg
3. 3.50cm
4. 0.25kg
5. 3000cm
6. 1.25km
7. 1.5m
8. 28mm
9. 0.065kg
10. £6.75

EXERCISE 7l (p. 120)

1. 2.36m
2. 20mm
3. 5000g
4. 0.5g
5. 4.25km
6. 3600kg
7. 2.35kg
8. 2000mg
9. 2.6m

EXERCISE 7m (p. 120)

1. 5780kg
2. 354p
3. 0.35t
4. 0.0155cm
5. 1.56t
6. 7.80f
7. 360mg
8. 2.05km
9. 8.598t

EXERCISE 7n (p. 120)

1. 4.2m
2. 0.35kg
3. £1.52
4. 0.5283km
5. 3.6cm
6. 470mm
7. 0.36m
8. 1.356g
9. £7

CHAPTER 8 Imperial Units

As imperial units are still widely used, knowledge of them and of their rough equivalents in the metric system is desirable.
EXERCISE 8a (p. 121)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68 in</td>
<td>5</td>
<td>100 in</td>
<td>9</td>
<td>28 ft</td>
<td>13</td>
<td>7 ft 2 in</td>
</tr>
<tr>
<td>2</td>
<td>14 ft</td>
<td>6</td>
<td>4320 yd</td>
<td>10</td>
<td>118 in</td>
<td>14</td>
<td>3 yd</td>
</tr>
<tr>
<td>3</td>
<td>1809 yd</td>
<td>7</td>
<td>17 ft</td>
<td>11</td>
<td>3 ft</td>
<td>15</td>
<td>4 yd 1 ft</td>
</tr>
<tr>
<td>4</td>
<td>35 in</td>
<td>8</td>
<td>123 in</td>
<td>12</td>
<td>2 ft 5 in</td>
<td>16</td>
<td>1 mile 240 yd</td>
</tr>
<tr>
<td>13</td>
<td>7 ft 2 in</td>
<td>17</td>
<td>6 ft 3 in</td>
<td>18</td>
<td>33 yd 1 ft</td>
<td>19</td>
<td>10 ft</td>
</tr>
<tr>
<td>17</td>
<td>6 ft 3 in</td>
<td>20</td>
<td>17 miles 80 yd</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 8b (p. 122)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>38 oz</td>
<td>3</td>
<td>67 oz</td>
<td>5</td>
<td>162 lb</td>
<td>7</td>
<td>1 lb 2 oz</td>
</tr>
<tr>
<td>2</td>
<td>28 oz</td>
<td>4</td>
<td>64 cwt</td>
<td>6</td>
<td>1 lb 8 oz</td>
<td>8</td>
<td>2 lb 4 oz</td>
</tr>
<tr>
<td>9</td>
<td>1 ton 10 cwt</td>
<td>10</td>
<td>1 cwt 8 lb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 8c (p. 123)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6 lb</td>
<td>7</td>
<td>7 lb</td>
<td>13</td>
<td>24 km</td>
<td>19</td>
<td>2 m</td>
</tr>
<tr>
<td>2</td>
<td>6 ft</td>
<td>8</td>
<td>2 1/2 m</td>
<td>14</td>
<td>160 km</td>
<td>20</td>
<td>4 kg</td>
</tr>
<tr>
<td>5</td>
<td>2 kg</td>
<td>9</td>
<td>8 oz</td>
<td>15</td>
<td>120 km</td>
<td>21</td>
<td>1st cloth</td>
</tr>
<tr>
<td>3</td>
<td>3 m</td>
<td>10</td>
<td>1 lb</td>
<td>16</td>
<td>64 km</td>
<td>22</td>
<td>270 km</td>
</tr>
<tr>
<td>6</td>
<td>15 ft</td>
<td>11</td>
<td>16 km</td>
<td>17</td>
<td>11 lb</td>
<td>23</td>
<td>8 oz</td>
</tr>
<tr>
<td>12</td>
<td>32 km</td>
<td>18</td>
<td>2 m</td>
<td>24</td>
<td>15 cm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9a (p. 125)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/4</td>
<td>6</td>
<td>1/2</td>
<td>11</td>
<td>1/3</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>7</td>
<td>1/4</td>
<td>12</td>
<td>1/4</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1/4</td>
<td>8</td>
<td>1/2</td>
<td>13</td>
<td>1/4</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>1/4</td>
<td>9</td>
<td>1</td>
<td>14</td>
<td>1/4</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1/4</td>
<td>10</td>
<td>1/4</td>
<td>15</td>
<td>2/3</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>2 m</td>
<td>25</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9b (p. 127)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td>N</td>
<td>7</td>
<td>1/4</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>4</td>
<td>E No</td>
<td>6</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9c (p. 128)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CHAPTER 9 Introducing Geometry

In all the geometry chapters there are no instructions as to how the solutions to problems should be written down. An intuitive approach is best at this age and most pupils should be asked only to fill in the sizes of angles in diagrams. The teacher will decide whether or not brighter children should be asked to write down reasoned solutions.

EXERCISE 9a (p. 125)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1/4</td>
<td>6</td>
<td>1/2</td>
<td>11</td>
<td>1/3</td>
<td>16</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1/2</td>
<td>7</td>
<td>1/4</td>
<td>12</td>
<td>1/4</td>
<td>17</td>
<td>9</td>
</tr>
<tr>
<td>3</td>
<td>1/4</td>
<td>8</td>
<td>1/2</td>
<td>13</td>
<td>1/4</td>
<td>18</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>1/4</td>
<td>9</td>
<td>1</td>
<td>14</td>
<td>1/4</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>1/4</td>
<td>10</td>
<td>1/4</td>
<td>15</td>
<td>2/3</td>
<td>20</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>2 m</td>
<td>25</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9b (p. 127)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>3</td>
<td>N</td>
<td>5</td>
<td>N</td>
<td>7</td>
<td>1/4</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>4</td>
<td>E No</td>
<td>6</td>
<td>1/4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9c (p. 128)

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>11</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
EXERCISE 9d (p. 129)

1. obtuse 4. acute 7. acute 10. acute 13. obtuse
2. acute 5. obtuse 8. acute 11. reflex 14. obtuse
3. reflex 6. reflex 9. obtuse 12. obtuse 15. acute

EXERCISE 9e (p. 130)

Worth discussing the number 360, e.g. how many whole numbers divide exactly into it? Compare it with 100; which is the better number and why? Its origins are interesting: it probably came from the Babylonians who used 60 as a number base. It is also worth noting that 60 is the base used for time (seconds and minutes and hours).

1. 180º 8. 270º 15. 180º 22. 120º 29. 330º
2. 90º 9. 90º 16. 30º 23. 30º 30. 150º
3. 270º 10. 120º 17. 45º 24. 60º 31. 210º
4. 180º 11. 270º 18. 120º 25. 120º 32. 300º
5. 90º 12. 270º 19. 60º 26. 210º 33. 210º
6. 270º 13. 180º 20. 45º 27. 180º 34. 150º
7. 180º 14. 90º 21. 30º 28. 300º 35. 210º

EXERCISE 9f (p. 132)

1. 34º 6. 20º 10. 11º 14. 218º 18. 345º
2. 60º 7. 115º 11. 325º 15. 345º 19. 282º
3. 75º 8. 54º 12. 332º 16. 330º 20. 213º
5. 150º

EXERCISE 9g (p. 136)

Intended to give pupils an idea of what an angle of given size looks like.

1. 30º 6. 180º 11. 5 15. 2 19. 6
2. 60º 7. 3 12. 9 16. 6 20. 8
3. 90º 8. 2 13. 1 17. 3 21. 1
4. 120º 9. 4 14. 10 18. 7 22. 12
5. 150º 10. 12

35. 60º 38. 260º 41. 45º 43. 25º 45. 160º
36. 140º 39. 25º 42. 5º 44. 80º 46. 105º
37. 350º 40. 300º

EXERCISE 9h (p. 138)

If pupils do measure each other’s angles, it is worth pointing out that protractors are not always as accurate as they should be; an angle measured as 51º on one protractor could be measured as 52º on another.

EXERCISE 9i (p. 138)

In No. 3 check that the pupils’ diagrams vary.

4. 150º 6. 35º 7. 65º 8. 140º 9. 160º
5. 20°

EXERCISE 9j (p. 140)
No. 1, or a similar one, could be demonstrated by one of the children in front of the class.

1. 180°
2. 180°

EXERCISE 9k (p. 140)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>120°</td>
<td>10.</td>
</tr>
<tr>
<td>2.</td>
<td>155°</td>
<td>11.</td>
</tr>
<tr>
<td>3.</td>
<td>10°</td>
<td>12.</td>
</tr>
<tr>
<td>4.</td>
<td>100°</td>
<td>13.</td>
</tr>
<tr>
<td>5.</td>
<td>20°</td>
<td>14.</td>
</tr>
<tr>
<td>6.</td>
<td>130°</td>
<td>15.</td>
</tr>
<tr>
<td>7.</td>
<td>80°</td>
<td>16.</td>
</tr>
<tr>
<td>8.</td>
<td>15°</td>
<td>17.</td>
</tr>
<tr>
<td>9.</td>
<td>135°</td>
<td>18.</td>
</tr>
</tbody>
</table>

EXERCISE 9l (p. 144)

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>110°</td>
<td>3.</td>
<td>110°</td>
</tr>
<tr>
<td>2.</td>
<td>60°</td>
<td>4.</td>
<td>80°</td>
</tr>
<tr>
<td>5.</td>
<td>180°</td>
<td>6.</td>
<td>150°</td>
</tr>
<tr>
<td>7.</td>
<td>100°</td>
<td>8.</td>
<td>120°</td>
</tr>
<tr>
<td>9.</td>
<td>310°</td>
<td>10.</td>
<td>60°</td>
</tr>
</tbody>
</table>

EXERCISE 9m (p. 145)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>120°</td>
<td>3.</td>
<td>120°</td>
<td>5.</td>
</tr>
<tr>
<td>2.</td>
<td>120°, 60°</td>
<td>4.</td>
<td>310°</td>
<td>6.</td>
</tr>
<tr>
<td>7.</td>
<td>40°</td>
<td>8.</td>
<td>120°, 60°, 120°, 60°</td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9n (p. 146)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>240°</td>
<td>3.</td>
<td>20°</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>140°</td>
<td>6.</td>
<td>140°</td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 9p (p. 146)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>240°</td>
<td>3.</td>
<td>354°</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>50°</td>
<td>6.</td>
<td>30°</td>
<td></td>
</tr>
</tbody>
</table>

2. W

CHAPTER 10 Symmetry

This chapter can be done earlier, but should be done before Chapter 11.

EXERCISE 10a (p. 148)

1, 3, 4 and 6

EXERCISE 10b (p. 150)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2</td>
<td>3.</td>
<td>0</td>
<td>4.</td>
</tr>
<tr>
<td>5.</td>
<td>2</td>
<td>6.</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

2. 1
EXERCISE 10c (p. 152)

1. 6
2. 6
3. 0
4. 3

EXERCISE 10d (p. 153)
It is advisable to point out that the amount of rotation must not be a complete revolution.

2, 3 and 5
9. In Exercise 10c, numbers 1, 2, 3, 4, 7 and 8 have rotational symmetry.

EXERCISE 10e (p. 155)

1. yes
2. no
3. yes
4. yes
5. yes
6. yes
7. no
8. yes

EXERCISE 10f (p. 156)

EXERCISE 10g (p. 158)

1. yes
2. no
3. yes
4. yes
5. yes
6. no
7. e.g. saucepan, milk bottle

CHAPTER 11 Triangles and Angles

Angles of a triangle: some teachers may prefer to use paper tearing before drawing and measurement of angles. This applies to angles of a quadrilateral later in the chapter.
EXERCISE 11c (p. 163)

1. 60º
2. 85º
3. 55º
4. 110º
5. 40º
6. 30º
7. 55º
8. 60º
9. 75º
10. 25º
11. 50º
12. 90º
13. 120º
14. 55º
15. 65º

EXERCISE 11d (p. 164)

1. 60º, 50º
2. 65º, 45º
3. 70º
4. 65º, 115º
5. 85º, 30º
6. 45º
7. 60º
8. 60º, 30º
9. 90º, 45º
10. 90º, 45º

EXERCISE 11e (p. 166)

1. 110º
2. 60º
3. 110º
4. 40º
5. 70º
6. 55º
7. 90º
8. 35º
9. 110º
10. 95º

EXERCISE 11f (p. 168) Some of the remaining measurements of each constructed triangle are given here and in the following exercises to help check pupils’ drawings. Alternatively, pupils could be asked to find them from their own drawings.

1. 4.2cm, 56º, 84º
2. 4.6cm, 97º, 48º
3. 6.5cm, 70º, 40º
4. 8.5cm, 97º, 33º
5. 3.8cm, 52º, 83º
6. 4.8cm, 79º, 53º
7. 4.3cm, 53º, 62º
8. 5.7cm, 53º, 75º
9. 6.4cm, 38º, 69º
10. 6.2cm, 44º, 80º

EXERCISE 11g (p. 169)

1. 34º, 106º
2. 34º, 98º
3. 35º, 80º
4. 37º, 90º
5. 40º, 84º
6. 45º, 83º
7. 37º, 90º
8. 47º, 75º
9. 23º, 90º
10. 52º, 69º

EXERCISE 11h (p. 169)

1. 3.6cm, 5.4cm
2. 34º, 101º
3. 4.6cm, 49º
4. 7.8cm, 50º
5. 119º, 26º
6. 13.4cm, 17.8cm
7. 8.9cm, 30º
8. 5.9cm, 5cm
9. 127º, 21º
10. Equilateral

11. Two possible triangles: Ĉ = 56º, b = 6cm; Ĉ = 124º, b = 2.6cm
12. R = 71º, q = 4.8cm; R = 109º, q = 1.2cm
13. 35º, 2.9cm; no

EXERCISE 11i (p. 171)

1. 50º
2. 80º
3. 110º
4. 50º
5. 60º
6. 40º
7. 90º
8. 60º
9. 120º
10. 90º
11. 110º
12. 65º
13. 60º, 120º
14. 80º, 70º
15. 80º, 115º
16. 50º, 130º

EXERCISE 11j (p. 174)

11. 70º
19. 60º
27. 55º, 70º
30. 50º, 80º
12. 70° 16. 110° 20. 20° 28. 45°, 135° 31. 40°, 140°
13. 65° 17. 45° 21. 75° 29. 80°, 80° 32. 20°, 70°
14. 40° 18. 70° 22. 86°

EXERCISE 11k (p. 177)
In No. 6, two tetrahedra can be stuck together to make a polyhedron with six faces. The nets
for other simple polyhedra are provided in Book 2 but are not included here because at this
stage constructions are rarely accurate enough to give satisfying results.

EXERCISE 11l (p. 178)
1. 65° 2. 70° 3. 80° 4. AC = 3.9cm 5. 10cm

EXERCISE 11m (p. 179)
1. 85°, 45° 2. 45°, 135° 3. 55°, 125° 4. Ĉ = 70° 5. AC = 4.1cm

EXERCISE 11n (p. 180)
1. 60°, 30° 2. 65°, 65°, 60° 3. 80°, 140° 4. 7.1cm (base) 5. 96°, 136°, 58°

CHAPTER 12 Factors and Indices

EXERCISE 12a (p. 181)
1. 1 x 18, 2 x 9, 3 x 6
2. 1 x 20, 2 x 10, 4 x 5
3. 1 x 24, 2 x 12, 3 x 8, 4 x 6
4. 1 x 27, 3 x 9
5. 1 x 30, 2 x 15, 3 x 10, 5 x 6
6. 1 x 36, 2 x 18, 3 x 12, 4 x 9, 6 x 6
7. 1 x 40, 2 x 20, 4 x 10, 5 x 8
8. 1 x 45, 3 x 15, 5 x 9
9. 1 x 48, 2 x 24, 3 x 16, 4 x 12, 6 x 8
10. 1 x 60, 2 x 30, 3 x 20, 4 x 15, 5 x 12, 6 x 10
11. 1 x 64, 2 x 32, 4 x 16, 8 x 8
12. 1 x 72, 2 x 36, 3 x 24, 4 x 18, 6 x 12, 8 x 9
13. 1 x 80, 2 x 40, 4 x 20, 5 x 16, 8 x 10
14. 1 x 96, 2 x 48, 3 x 32, 4 x 24, 6 x 16, 8 x 12
15. 1 x 100, 2 x 50, 4 x 25, 5 x 20, 10 x 10
16. 1 x 108, 2 x 54, 3 x 36, 4 x 27, 6 x 18, 9 x 12
17. 1 x 120, 2 x 60, 3 x 40, 4 x 30, 5 x 24, 6 x 20, 8 x 15, 10 x 12
18. 1 x 135, 3 x 45, 5 x 27, 9 x 15
19. 1 x 144, 2 x 72, 3 x 48, 4 x 36, 6 x 24, 8 x 18, 9 x 16, 12 x 12
20. 1 x 160, 2 x 80, 4 x 40, 5 x 32, 8 x 20, 10 x 16

EXERCISE 12b (p. 181)
Some examples discussed with the class would be useful.
1. 21, 24, 27, 30, 33, 36, 39 3. 28, 35, 42, 49, 56 5. 26, 39, 52, 65
2. 20, 25, 30, 35, 40, 45 4. 55, 66, 77, 88, 99
EXERCISE 12c (p. 181)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2, 3, 5, 7, 11, 13</td>
<td>3.</td>
<td>31, 37, 41, 43, 47</td>
<td>5.</td>
<td>41, 101, 127</td>
</tr>
<tr>
<td>2.</td>
<td>23, 29</td>
<td>4.</td>
<td>5, 19, 29, 61</td>
<td>6.</td>
<td>a) F b) F c) T d) T e) F</td>
</tr>
</tbody>
</table>

EXERCISE 12d (p. 182)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2^3</td>
<td>7.</td>
<td>13^3</td>
<td>12.</td>
<td>27</td>
</tr>
<tr>
<td>2.</td>
<td>3^4</td>
<td>8.</td>
<td>19^2</td>
<td>13.</td>
<td>25</td>
</tr>
<tr>
<td>3.</td>
<td>5^4</td>
<td>9.</td>
<td>2^7</td>
<td>14.</td>
<td>8</td>
</tr>
<tr>
<td>4.</td>
<td>7^5</td>
<td>10.</td>
<td>6^4</td>
<td>15.</td>
<td>9</td>
</tr>
<tr>
<td>5.</td>
<td>2^3</td>
<td>11.</td>
<td>32</td>
<td>16.</td>
<td>49</td>
</tr>
<tr>
<td>6.</td>
<td>3^6</td>
<td></td>
<td></td>
<td>17.</td>
<td>81</td>
</tr>
</tbody>
</table>

EXERCISE 12e (p. 183)

A calculator should be used for Nos. 11–16.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2^2 \times 7^2</td>
<td>5.</td>
<td>2^3 \times 3^2 \times 5^2</td>
<td>8.</td>
<td>5^2 \times 13^3</td>
</tr>
<tr>
<td>2.</td>
<td>3^3 \times 5^2</td>
<td>6.</td>
<td>2^2 \times 3 \times 11^2</td>
<td>9.</td>
<td>3^3 \times 5^2 \times 7^2</td>
</tr>
<tr>
<td>3.</td>
<td>5^2 \times 13^2</td>
<td>7.</td>
<td>3^2 \times 5 \times 7^4</td>
<td>10.</td>
<td>2^3 \times 3^2 \times 5^2</td>
</tr>
<tr>
<td>4.</td>
<td>2^2 \times 3^2 \times 5^2</td>
<td></td>
<td></td>
<td>11.</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.</td>
<td>225</td>
</tr>
</tbody>
</table>

EXERCISE 12f (p. 184)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>yes</td>
<td>4.</td>
<td>yes</td>
<td>6.</td>
<td>yes</td>
</tr>
<tr>
<td>2.</td>
<td>no</td>
<td>5.</td>
<td>no</td>
<td>7.</td>
<td>yes</td>
</tr>
<tr>
<td>3.</td>
<td>yes</td>
<td></td>
<td></td>
<td>8.</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.</td>
<td>yes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.</td>
<td>yes</td>
</tr>
</tbody>
</table>

EXERCISE 12g (p. 185)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>2^3 \times 3</td>
<td>3.</td>
<td>3^2 \times 7</td>
<td>5.</td>
<td>2^3 \times 17</td>
</tr>
<tr>
<td>2.</td>
<td>2^2 \times 7</td>
<td>4.</td>
<td>2^2 \times 3^2</td>
<td>6.</td>
<td>2^2 \times 3 \times 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7.</td>
<td>2^3 \times 3^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.</td>
<td>2^4 \times 3 \times 7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.</td>
<td>3^4 \times 7^2</td>
</tr>
</tbody>
</table>

EXERCISE 12h (p. 185)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>3</td>
<td>4.</td>
<td>14</td>
<td>7.</td>
<td>21</td>
</tr>
<tr>
<td>2.</td>
<td>8</td>
<td>5.</td>
<td>25</td>
<td>8.</td>
<td>13</td>
</tr>
<tr>
<td>3.</td>
<td>12</td>
<td></td>
<td></td>
<td>10.</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.</td>
</tr>
</tbody>
</table>

EXERCISE 12i (p. 186)

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>15</td>
<td>4.</td>
<td>36</td>
<td>7.</td>
<td>48</td>
</tr>
<tr>
<td>2.</td>
<td>24</td>
<td>5.</td>
<td>36</td>
<td>8.</td>
<td>60</td>
</tr>
<tr>
<td>3.</td>
<td>15</td>
<td></td>
<td></td>
<td>10.</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.</td>
</tr>
</tbody>
</table>

EXERCISE 12j (p. 186)

These problems are difficult and should be approached with caution. They are useful for discussion but only the most able children should be allowed to work through them on their own.
1. £1
2. £10.80
3. 120m
4. 50cm
5. 2 minutes past midnight
6. 78s
7. 13 turns and 6 turns
8. 30 steps; 2
9. 3 minutes
10. 480, 20

CHAPTER 13 Tables and Networks

EXERCISE 13a (p. 188)

1. a) £19.20 b) £18.60 c) £35.30 d) London, Saturday + Alton Towers, weekday, or Birmingham, Sunday + Alton Towers, Saturday
2. a) £49 b) £61 c) £6000, in Area 3 d) £6000 in Area 1 or £7000 in Area 2
 e) £6000, in Area 2 f) Martins £7000, Barkers £6000

EXERCISE 13b (p. 190)

Many other questions can be asked about these tables.

1. a) 4 b) 15 c) 22 d) 32 e) Otherwise there is no-one to be in the class
2. a) 1 b) 15 c) 30
3. a) 9 b) 1 c) 14 d) 28 e) 23
4. a) Missing numbers are 4 and 9 b) 9 c) 3

Other tables can be made to show information collected in the class.

EXERCISE 13c (p. 192)

1. a) 14km b) 17km c) 22km d) 21km e) e.g. A to E to D to C, 24km f) via F
2. a) 550m b) 440m c) 705m
3. a) 790m b) yes, between church and school and between Post Office and school
4. a) Post Office, shop, school, Daisy’s house, school, Post Office; 560m
 b) Post Office, school, Daisy’s house, school, Post Office, Pete’s house, Post Office or this route in reverse; 820m
5. a) 12m b) 33m c) 60m d) A to C to D, 32m e) A to B to D, 33m
6. a) 10m b) 35min c) A to D to E to B, 30min d) B to E to D, 25min

EXERCISE 13d (p. 194)

1. drawing is possible starting at B but not at C.
3. (a) and (b) are not possible.
4. a) B, F, I, K, L M b) points other than those in (a)
6. Diagrams with only even numbers can be drawn starting at any point.
 Diagrams with two odd numbers can be drawn starting from one of the odd points.
 Other diagrams cannot be drawn.

EXERCISE 13e (p. 196)

1. a) AEI 6, ADGHEI 24, ADEFI 17, ABCEFI 17, ABEI 8, ADGHEFI 28, ADGEFI 23
 b) ADGHEFI
2. a) ABC, 10min b) ABEADC, 38min c) 24min
3. a) Yes, from P, finishing at C
 Yes from C, finishing at P. Not possible from any other point.
b) no
4. a) yes b) yes c) no

EXERCISE 13f (p. 198)
1.
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

2 a)
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

3. The table is symmetrical about the leading diagonal (i.e. top left to bottom right).

4. a)
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
</tr>
</tbody>
</table>
EXERCISE 13g (p. 200)

1. a) David b) no, son c) sister d) grandfather

2. a) Sally d) Sally
 b) older lan
 c) we do not know lan

3. a) 2, 3, 4, 6 c) 2, 3, 4, 6
 b) yes, 2

4. a) the relationship works both ways b) yes

5. a) Philip and Martin are cousins b) Sarah is not a cousin of either Philip or Martin
 c)

CHAPTER 14 Area

Plenty of class discussion is advisable before finding areas of specific objects: e.g. What is “area”? Why is area counted in squares and not in triangles? The number of squares may vary because it is not always easy to say whether more than half a square is included.

EXERCISE 14a (p. 202)

1. 11 5. 26 8. a) A b) B 11. 50 14. 76
2. 16 6. 20 9. 45 12. 40 15. 62
3. 11 7. 21 10. 43 13. 37 16. 26
4. 20

EXERCISE 14b (p. 206)

1. 4cm² 5. 2.25cm² 9. $\frac{1}{4}$ km² 13. 27m² 17. 2.85m²
2. 64cm² 6. 6.25cm² 10. $\frac{9}{16}$ m² 14. 280cm² 18. 30.24cm²
3. 100cm² 7. 0.49m² 11. 30cm² 15. 3.96mm² 19. 22 800cm²
4. 25cm² 8. 1.44cm² 12. 48cm² 16. 1470km² 20. 36 000mm²

EXERCISE 14c (p. 207)

1. 120cm² 3. 149m² 5. 52m² 7. 544mm² 9. 43m²
2. 36m² 4. 208mm² 6. 87cm² 8. 90cm² 10. 228cm²

EXERCISE 14d (p. 209)

1. 8cm 5. 6cm 9. 2km 13. 24m 17. 6.8m
2. 32cm 6. 10cm 10. 3m 14. 68cm 18. 22.2cm
3. 40cm 7. 2.8m 11. 22cm 15. 8mm 19. 670cm
4. 20cm 8. 4.8cm 12. 28cm 16. 154km 20. 780mm

EXERCISE 14e (p. 209)

1. 2cm, 8cm² 3. 5m, 15m² 5. 5cm, 22cm 7. 9km, 26km 9. 25cm, 125cm²
2. 2cm, 10cm² 4. 9mm, 54mm² 6. 12m, 44m 8. 9mm, 32mm 10. 80cm, 202cm

EXERCISE 14f (p. 210)

Intended for the above average.

1. 28cm², 24cm 3. 80mm², 48cm 5. 1664 cm², 272cm 7. 91cm² 9. 432cm²
2. 24cm², 24cm 4. 15m², 32cm 6. 184 cm² 8. 198cm² 10. 4.84cm²

EXERCISE 14g (p. 212)

1. 4 3. 6 4. 6 5. 45 6. 500 2. 9

EXERCISE 14h (p. 213)

1. a) 30 000 b) 120 000 c) 75 000 d) 820 000 e) 85 000
2. a) 1400 b) 300 c) 750 d) 2600 e) 3250
3. a) 560 b) 56 000
4. a) 4 b) 25 c) 0.5 d) 0.25 e) 7.34
5. a) 0.55 b) 14 c) 0.076 d) 1.86 e) 2970
6. a) 7.5 b) 0.43 c) 0.05 d) 0.245 e) 176

EXERCISE 14i (p. 215)
Pupils will benefit from using a calculator.

1. 50 000cm² 3. 175 000cm² 5. 8m² 7. 37 500cm² 9. 120 000m²
2. 1800mm² 4. 14 000cm² 6. 15 000cm² 8. 180mm² 10. 22 500m²

EXERCISE 14j (p. 215)
Average ability children should be encouraged to try some of these with the help of a calculator.

1. 8250m², 370m 3. 8400m², 380m 5. 5m² 7. £9 9. 100
CHAPTER 15 Parallel Lines and Angles

EXERCISE 15a (p. 217)
Can be used for discussion.

EXERCISE 15b (p. 219)

1. g
2. e
3. d
4. e
5. f
6. f
7. d
8. g
9. e
10. d

EXERCISE 15d (p. 222)

1. 60°
2. 110°
3. 75°
4. 110°
5. 60°
6. 120°
7. 110°
8. 60°
9. 30°
10. 130°

EXERCISE 15e (p. 224)

1. 50°
2. 130°, 130°, 50°
3. 60°, 60°, 60°, 120°, 60°
4. 50°, 80°, 50°
5. 70°, 80°, 30°
6. 115°, 115°
7. 140°, 40°, 40°
8. 70°, 110°, 70°, 70°
9. 50°, 130°
10. 55°, 125°, 55°
11. 110°, 70°, 130°, 130°
12. 40°, 100°
13. 80°
14. 90°, 90°, 50°
15. 120°
16. 40°
17. 70°
18. 60°
19. 135°
20. 55°
21. 55°
22. 120°
23. 120°
24. 45°

EXERCISE 15f (p. 227)

1. e
2. e
3. d
4. d
5. d
6. g
7. g
8. e
9. d
10. g

EXERCISE 15g (p. 229)

1. 50°, 130°
2. 130°, 50°
3. 50°, 70°
4. 260°, 40°, 60°
5. 70°, 70°, 70°
6. 60°
7. 55°, 65°
8. 60°
9. 90°
10. 90°
11. 30°
12. 45°

EXERCISE 15h (p. 230)

1. e, g
2. e, d
3. e, g
4. e, d
5. h, f
6. d, g
7. 70°, 110°, 180°
8. 130°, 50°, 180°
9. 40°, 40°, 80°
10. 120°, 60°, 180°

EXERCISE 15i (p. 232)

1. 120°
2. 130°, 50°
3. 85°
4. 40°, 100°, 60°
5. 55°, 125°
6. 40°
7. 80°, 80°
8. 130°, 130°, 50°
9. 80°, 100°, 80°, 100°
10. 70°, 110°
EXERCISE 15j (p. 233)

1. 65°
2. 140°
3. 55°
4. 110°
5. 70°
6. 70°
7. 45°
8. 75°
9. parallel

EXERCISE 15k (p. 234)

1. 80°
2. 60°
3. 110°
4. 40°
5. 25°
6. 50°
7. 40°
8. 40°

EXERCISE 15l (p. 235)

1. 60°
2. 110°
3. 90°
4. 130°

CHAPTER 16 Coordinates

Negative numbers as coordinates are introduced in this chapter. Some teachers may prefer first to introduce negative numbers in general, in which case Chapter 17 should be taken before this one.

EXERCISE 16a (p. 237)

Nos. 10–21 can be used for discussion.

1. A (2,2), B (5,2), C (7,6), D (4,5), E (7,0), F (9,4), G (0,8), H (5,8)
4. square
5. isosceles triangle
6. rectangle
7. square
8. isosceles triangle

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10. 5</td>
<td>13. 1</td>
<td>16. 5</td>
<td>18. 1</td>
<td>20. 5</td>
<td></td>
</tr>
<tr>
<td>11. 7</td>
<td>14. 14</td>
<td>17. 4</td>
<td>19. 6</td>
<td>21. 0</td>
<td></td>
</tr>
<tr>
<td>12. 0</td>
<td>15. 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

22. (9,12), (9,9), (13,6)
23. (3,11), (3,7), (7,7); 4
24. (1,1), (6,1), (8,4), (3,4); 5,5
25. (13,3); 4
26. (2,5)
27. (7,1)
28. (4,1)
29. (5,4)
30. (3,7)
31. (2,3)

EXERCISE 16b (p. 241)

This and the next exercise use positive coordinates to investigate some of the properties of the special quadrilaterals. The questions are not difficult but this section can be omitted at a first reading.

1. a) 8, 8, 8, 8, b) DC, yes c) 90°
2. a) AB and DC, BC and AD b) AB and DC, BC and AD c) 90°
3. a) all equal b) AB and DC, BC and AD c) A = C, B = D
4. a) AB and DC, BC and AD b) AB and DC, BC and AD c) A = C, B = D
5. a) none b) AB and DC c) none

EXERCISE 16c (p. 243)
1. parallelogram 3. trapezium 5. trapezium 7. square 9. parallelogram
2. rectangle 4. square 6. rhombus 8. rectangle 10. rhombus

EXERCISE 16d (p. 244)

1. 2, 3, 6, 1, –5, –3, 5, –3, –5, 5, 0 2. 2, –2, 5, –4, 2, 5, –5, 0
3. 5 below 6. 10 above 9. 3 right 11. 2 right 13. on y-axis
4. 3 above 7. on x-axis 10. 5 left 12. 7 left 14. 9 left
5. 1 below 8. 4 below

15. A (–2,3), B (3,1), C (2,–2), D (–3,1), E (1,–4) F (–4,–4), G (1,2), H (4,–4), I (–4,–4), J (–4,3)

18. square 19. isosceles triangle 20. rectangle 21. right-angled

EXERCISE 16e (p. 247)

1. 6 7. 5 13. (–1,3) 19. (–1,3) 25. (–5,–2)
2. 8 8. 7 14. (–6,–1) 20. (1,0) 26. (4, 3/2)
3. 6 9. 11 15. (–5,1) 21. (4,2) 27. (–1,3)
4. 2 10. 11 16. (0,–1) 22. (2,–1) 28. (–1,0)
5. 2 11. (–1,1) 17. (3,2) 23. (–7/2,3) 29. (0,0)
6. 7 12. (1,–2) 18. (–1,2) 24. (–3,–1) 30. (–1,0)

EXERCISE 16f (p. 248)

Suitable for the above average only.

1. a) (1,2), (3,6), (–3,–6), (–2,–4), (2,4) b) 10 c) 16, 20, –8, 6, 9, –5, 2a
2. a) (2,2), (4,3), (6,4), (10,6), (–4,–1), (–8,–3), (0,1)
 b) y-coordinate = 1/2 (x-coordinate)+1 c) 5
 d) 7, 11, 16, –5, 16, 1/2a+1
3. a) (3,–1), (5,–3), (6,–4), (8,–6), (–2,4), (–4,6), (1,1)
 b) –5, –8, –10, –18, 9, 11, –8, 10, –10

EXERCISE 16g (p. 250)

Omit this exercise if Exercise 16b and Exercise 16c were not covered. This exercise investigates the properties of the diagonals of the special quadrilaterals and can be omitted, although the questions are not difficult.

1. a) parallelogram c) no d) both e) no
2. a) square c) yes d) both e) yes
3. a) trapezium c) no d) neither e) no
4. a) rhombus c) no d) both e) yes
5. a) rectangle c) yes d) both e) no
6. rectangle, square
7. rhombus, square
8. parallelogram, rectangle, rhombus, square
EXERCISE 16h (p. 250)

1. \((-4, 16)\)
2. \((-3, 9)\)
3. \((1, 1)\)
4. \((0, 0)\)
5. \((2, 4)\)
6. \((4, 16)\)

7. ignoring the minus sign, the \(y\) coordinate is the square of the \(x\) coordinate.

8. 9
9. 4
10. 6.25
11. 2.25
12. 6.25

CHAPTER 17 Directed Numbers

EXERCISE 17a (p. 253)

1. \(+10^\circ\)
2. \(–7^\circ\)
3. \(–3^\circ\)
4. \(+5^\circ\)
5. \(–8^\circ\)
6. \(0^\circ\)
7. \(–3^\circ\)
8. \(–2^\circ\)
9. \(–3^\circ\)
10. \(–3^\circ\)
11. \(–5^\circ\)
12. \(–3^\circ\)
13. \(–3^\circ\)
14. \(–3^\circ\)
15. \(–2^\circ\)
16. \(0^\circ\)
17. \(0^\circ\)
18. \(0^\circ\)
19. \(–3^\circ\)
20. \(–3^\circ\)
21. \(–3^\circ\)
22. \(–3^\circ\)
23. \(–3^\circ\)
24. \(–3^\circ\)
25. \(–3^\circ\)
26. \(–3^\circ\)
27. \(–3^\circ\)
28. \(–3^\circ\)
29. \(–3^\circ\)
30. \(–3^\circ\)
31. \(–3^\circ\)
32. \(–3^\circ\)
33. \(–3^\circ\)
34. \(–3^\circ\)
35. \(–3^\circ\)
36. \(–3^\circ\)
37. \(–3^\circ\)
38. \(–3^\circ\)
39. \(–3^\circ\)
40. \(–3^\circ\)

EXERCISE 17b (p. 256)

1. \(\text{>}\)
2. \(\text{>}\)
3. \(\text{>}\)
4. \(\text{<}\)
5. \(\text{<}\)
6. \(\text{<}\)
7. \(\text{<}\)
8. \(\text{<}\)
9. \(\text{<}\)
10. \(\text{<}\)
11. \(\text{<}\)
12. \(\text{<}\)
13. \(\text{<}\)
14. \(\text{<}\)
15. \(\text{<}\)
16. \(\text{<}\)
17. \(\text{<}\)
18. \(\text{<}\)
19. \(\text{<}\)
20. \(\text{<}\)
21. \(\text{<}\)
22. \(\text{<}\)
23. \(\text{<}\)
24. \(\text{<}\)
25. \(\text{<}\)
26. \(\text{<}\)
27. \(\text{<}\)
28. \(\text{<}\)
29. \(\text{<}\)
30. \(\text{<}\)
31. \(\text{<}\)
32. \(\text{<}\)
33. \(\text{<}\)
34. \(\text{<}\)
35. \(\text{<}\)
36. \(\text{<}\)
37. \(\text{<}\)
38. \(\text{<}\)
39. \(\text{<}\)
40. \(\text{<}\)

EXERCISE 17c (p. 257)

1. \(–3\)
2. \(3\)
3. \(–2\)
4. \(–2\)
5. \(2\)
6. \(7\)
7. \(1\)
8. \(2\)
9. \(–12\)
10. \(–1\)
11. \(5\)
12. \(–2\)
13. \(10, 12\)
14. \(–10, –12\)
15. \(–1\)
16. \(3\)
17. \(2\)
18. \(–3\)
19. \(–3\)
20. \(–1\)
21. \(3\)
22. \(–1\)
23. \(3\)
24. \(–6\)
25. \(–5\)
26. \(4\)
27. \(6\)
28. \(0\)
29. \(–3\)
30. \(–5\)
31. \(1\)
32. \(2\)
33. \(2\)
34. \(–2\)
35. \(–1\)
36. \(–2\)
37. \(1\)
38. \(2\)
39. \(5\)
40. \(16\)

Addition and subtraction of negative numbers: discussion using many different examples is advisable.

EXERCISE 17d (p. 259)

1. \(2\)
2. \(–3\)
3. \(7\)
4. \(3\)
5. \(6.3\)
6. \(0\)
7. \(14\)
8. \(6\)
9. \(–14\)
10. \(7\)
11. \(0\)
12. \(0\)
13. \(6\)
14. \(6\)
15. \(–4\)
16. \(7\)
17. \(–3\)
18. \(2\)
19. \(–4\)
20. \(13\)
21. \(13\)
22. \(13\)
23. \(–6\)
24. \(8\)
25. \(4\)
26. \(6\)
27. \(3\)
28. \(0\)
29. \(–3\)
30. \(–5\)
31. \(1\)
32. \(2\)
33. \(2\)
34. \(–2\)
35. \(–1\)
36. \(–2\)
37. \(1\)
38. \(2\)
39. \(5\)
40. \(16\)
EXERCISE 17e (p. 260)

1. 1
2. –5
3. 9
4. 8
5. –12
6. 7
7. 4
8. 10
9. 5
10. 2
11. 5
12. –12
13. 5
14. –9
15. 1
16. 9
17. –1
18. 0
19. 2
20. 16
21. 5
22. –4

23. –8
24. 19
25. –4
26. –4
27. 4
28. –3
29. –3
30. –19
31. 2
32. 3

33. 0
34. 0
35. –1
36. 0
37. 9
38. –7
39. –4
40. 3
41. –10
42. –3

43. –2
44. 1
45. 2
46. –12
47. 3
48. 18
49. –2
50. 1
51. 2
52. –15
53. –9

54. –6
55. –8

EXERCISE 17f (p. 261)

1. –24
2. –14
3. –24
4. –12
5. –27
6. –12

7. –48
8. –5
9. –6
10. –5
11. –16
12. –36

13. –42
14. –5
15. –12.5

EXERCISE 17g (p. 262)

1. –3
2. –2
3. –5
4. –4
5. –4
6. –2
7. –10
8. –3

9. –5
10. –4
11. –1
12. –2

13. –2
14. –2
15. –4
17. –4
18. –2

EXERCISE 17h (p. 263)

1. –5º
2. a) < b) >

3. 2
4. –5
5. –2
6. 4
7. 0

9. –24
10. –12

EXERCISE 18a (p. 264)

1. x – 3 = 4
2. x + 1 = 3

3. 3 + x = 9
4. x – 5 = 2

5. 2x = 8
6. 7x = 14

7. 3x = 15
8. 6x = 24

CHAPTER 18 Introducing Algebra

The two algebra chapters should be done in their entirety only by above average ability groups, but all pupils can have some introduction to equations at this stage. We have suggested some convenient stopping places. Equations are dealt with again in Book 2A.

EXERCISE 18a (p. 264)

Can be used for discussion.

1. x – 3 = 4, 7
2. x + 1 = 3, 2

3. 3 + x = 9, 6
4. x – 5 = 2, 7

5. 2x = 8, 4
6. 7x = 14, 2

7. 3x = 15, 5
8. 6x = 24, 4
EXERCISE 18b (p. 266)
Useful to point out here that any letter can be used.

1. 8 7. 6 13. –2 19. 10 25. 5
2. 9 8. 6 14. –5 20. 3 26.12
3. 2 9. 5 15. –1 21. 8 27.12
4. 7 10. 7 16. –1 22. 10 28.3
5. 4 11. 3 17. –2 23. 9 29.2
6. 5 12. 1 18. –4 24. 12 30.9

EXERCISE 18c (p. 267)

1. 2 10. 1 19. 10 27. 9 35. –7
2. 9 11. 4 20. 6 28. 17 36. 9
3. 3 12. –3 21. 11 29. 5 37. 4
4. 13 13. 4 22. 5 30. 16 38. 4
5. 3 14. 8 23. 11 31. 23 39. 4
6. 3 15. –1 24. 16 32. 4 40. –2
7. 7 16. 12 25. 12 33. 7 41. –2
8. –5 17. 10 26. 10 34. 9 42. 2
9. 0 18. 11

EXERCISE 18d (p. 268)

1. 2 6. 2 \frac{1}{7} 11. 2 16. 2 21. \frac{3}{7}
2. 3 7. \frac{1}{7} 12. \frac{1}{7} 17. 1 \frac{4}{7} 22. 1 \frac{1}{7}
3. 2 \frac{1}{2} 8. 3 13. 6 18. 3 \frac{1}{2} 23. 5
4. 3 9. 1 \frac{2}{3} 14. 1 19. 9 24. \frac{1}{3}
5. 4 10. 20 15. \frac{1}{6} 20. 2

EXERCISE 18e (p. 269)

1. 4 7. 8 13. 6 19. 2 \frac{2}{3} 25. 0
2. 12 8. 16 14. 3 \frac{1}{3} 20. –5 26. 5
3. 2 9. 5 \frac{1}{2} 15. 5 21. 7 27. 20
4. 1 10. 13 16. –1 22. 2 28. 30
5. 1 \frac{1}{5} 11. 8 17. \frac{2}{7} 23. 1 \frac{2}{7} 29. 30
6. 3 12. 16 18. –1 24. 11 30. \frac{1}{5}

EXERCISE 18f (p. 270)

1. 4 10. 2 \frac{2}{3} 19. –1 27. –1 35. \frac{1}{3}
2. 3 11. 7 20. 1 \frac{4}{7} 28. 0 36. 6
3. 2 12. 5 21. 2 29. 2 37. –1
4. 6 13. 3 22. 2 30. 3 \frac{1}{3} 38. \frac{1}{4}
This is a convenient stopping place for average ability groups.

EXERCISE 18g (p. 271)

Good questions to discuss with above average ability groups but only the most able children should be allowed to work through these on their own.

1. \(4x-8 = 20, 7\)
3. \(3x+6 = 21, 5\)
5. \(3x+7 = 28, 7\)
7. \(2x+6 = 20, 7\)
9. \(3x-9 = 18, 9\)

2. \(6x-12 = 30, 7\)
4. \(x+8 = 10, 2\)
6. \(2x+6 = 24, 9\)
8. \(2x+10 = 24, 7\)
10. \(2x+9 = 31, 11\text{cm}\)

EXERCISE 18h (p. 273)

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>11</td>
<td>1. 4</td>
<td>38</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>12</td>
<td>2. 1</td>
<td>39</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>13</td>
<td>3. 3</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>14</td>
<td>4. 5</td>
<td>41</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>15</td>
<td>5. 7</td>
<td>42</td>
</tr>
<tr>
<td>6</td>
<td>(-\frac{3}{4})</td>
<td>16</td>
<td>6. (-\frac{3}{4})</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>17</td>
<td>7. 6</td>
<td>44</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>18</td>
<td>8. 5</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>19</td>
<td>9. 7</td>
<td>46</td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 18i (p. 275)

A lot of discussion is necessary to get over the idea of “a term of an expression” and what is meant by “like terms” and “unlike terms”.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10x</td>
<td>3</td>
<td>2x</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>4x</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 18j (p. 275)

<p>| | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7x+7</td>
<td>6</td>
<td>8x+8y</td>
<td>11</td>
<td>3x-12</td>
<td>15</td>
<td>7-5x</td>
<td>19</td>
<td>15x</td>
</tr>
<tr>
<td>2</td>
<td>5x+5</td>
<td>7</td>
<td>8x+2y</td>
<td>12</td>
<td>3y-x</td>
<td>16</td>
<td>3-2x</td>
<td>20</td>
<td>4x-7y+4z</td>
</tr>
<tr>
<td>3</td>
<td>4x-5</td>
<td>8</td>
<td>4x+8y</td>
<td>13</td>
<td>(-6x-6y)</td>
<td>17</td>
<td>10x-2y</td>
<td>21</td>
<td>9x+y-11</td>
</tr>
<tr>
<td>4</td>
<td>5c-2a</td>
<td>9</td>
<td>8x+3</td>
<td>14</td>
<td>1-4x</td>
<td>18</td>
<td>11x-9y</td>
<td>22</td>
<td>-1</td>
</tr>
<tr>
<td>5</td>
<td>8x-2y</td>
<td>10</td>
<td>8x-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXERCISE 18k (p. 276)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>13</td>
<td>(1\frac{1}{2})</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
<td>4\frac{1}{2}</td>
<td>14</td>
<td>-6</td>
<td>20</td>
</tr>
<tr>
<td>25</td>
<td>1</td>
<td>26</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. $ \frac{4}{7} $
4. $ -1 \frac{1}{3} $
5. $ \frac{1}{4} $
6. $ 12.2 $

EXERCISE 18l (p. 277)

1. $ \frac{2}{3} $
2. $ x + 4 = 10, 6 $

EXERCISE 18m (p. 277)

1. $ 2 $
2. $ 7c $

EXERCISE 18n (p. 277)

1. $ 5 \frac{1}{2} $
2. $ 0 $

EXERCISE 18p (p. 278)

1. $ 4 $
2. $ -x $

CHAPTER 19 Volume

Calculators should be used for most numerical work in this chapter.

EXERCISE 19a (p. 280)

1. $ 48cm^3 $
2. $ 1600mm^3 $
3. $ 5400mm^3 $
4. $ 16mm^3 $
5. $ 31.72m^3 $

EXERCISE 19b (p. 281)

1. $ 8 $
2. $ 6 $
3. $ 8 $
4. $ 12 $
5. $ 64 $

6. a) $ 128 $
b) $ 16 $
c) $ 2 $

The remainder of this chapter is suitable only for above average ability groups, except for the first few problems in Exercise 19f.

EXERCISE 19c (p. 283)
1. 8000mm³
2. 14 000mm³
3. 6 200mm³

4. 430mm³
5. 92 000 000mm³
6. 40mm³

7. 3 000 000cm³
8. 2 500 000cm³

9. 420 000cm³
10. 6 300cm³
11. 0.022cm³
12. 0.731cm³

EXERCISE 19d (p. 284)

1. 2500cm³
2. 1760cm³
3. 540cm³

4. 7.5cm³
5. 35 000cm³
6. 28cm³

7. 7 litres
8. 4 litres
9. 24 litres
10. 5000 litres
11. 12 000 litres
12. 4600 litres

EXERCISE 19e (p. 284)

1. 30cm³
2. 2m³
3. 540cm³

4. 600cm³
5. 5760mm³
6. 40 000cm³

7. 28cm³
8. 8m³
9. 17.5cm³
10. 180cm³

EXERCISE 19f (p. 285)

The first three problems are suitable for everybody to try.

1. 60m³
2. 7776cm³

3. 6480m³
4. 125
5. 48
6. 300m³; 300 000
7. 60
8. 9000
9. 64
10. 1600

EXERCISE 19g (p. 287)

1. a) 3 200 000cm³
2. 1600cm³

b) 3 200 000 000mm³
3. 64cm³
4. 50 000cm³

5. 13 500mm³

EXERCISE 19h (p. 287)

1. a) 8000mm³
2. 3.5 litres

b) 0.000 008m³
3. 300cm³
4. 0.512cm³

5. 120 000cm³

EXERCISE 19i (p. 287)

1. a) 9000cm³
2. 440cm³

b) 9 000 000mm³
3. 216cm³
4. 288cm³

5. 2400 litres

EXERCISE 19j (p. 287)

1. 0.0009m³
2. 10.8 litres
3. 75 litres
4. 8cm³

5. 1.2m³

EXERCISE 19k (p. 288)

1. a) no
2. Yes, measurements needed. Lengths on the drawing are not correct.
3. no

EXERCISE 19l (p. 289)

1. and 2. lines are the correct length

3. a) lines are the correct length
 c) no
 d)one vertex is hidden behind another

4. a) and b) lines are the correct length
EXERCISE 19m (p. 291)

2. a) (i) 2 (ii) 2 (iii) 4cm by 3cm
b) e.g.

3. a) 6
b) two faces 1cm by 4cm, two 2cm by 1cm, two 4cm by 2cm
4. b) IJ
c) K and G
5. a) IH
b) B and D

6.

7. There are a large number of arrangements of six squares and of these, 11 will make cubes. (Count reflections as the same.)

CHAPTER 20 Vectors

This unit is optional. It can be done later (it is repeated with different exercises in Book 3) or omitted completely. If a brief introduction is thought appropriate, Exercise 20a and Exercise 20b form a good start.

Some pupils may suggest the need to state a time in the initial paragraph (p. 294); this can be dealt with if it arises but need not be introduced otherwise.

EXERCISE 20a (p. 294)

1. scalar
2. vector
3. scalar
4. scalar
5. vector

EXERCISE 20b (p. 295)
EXERCISE 20c (P. 297)

1. \(\begin{pmatrix} 3 \\ 2 \end{pmatrix}\)
2. \(\begin{pmatrix} 4 \\ 1 \end{pmatrix}\)
3. \(\begin{pmatrix} 4 \\ 0 \end{pmatrix}\)
4. \(\begin{pmatrix} -2 \\ 2 \end{pmatrix}\)
5. \(\begin{pmatrix} -3 \\ 4 \end{pmatrix}\)
6. \(\begin{pmatrix} -5 \\ -3 \end{pmatrix}\)
7. \(g = \begin{pmatrix} 5 \\ 0 \end{pmatrix}\)
8. \(j = \begin{pmatrix} -6 \\ 7 \end{pmatrix}\)
9. \(k = \begin{pmatrix} -6 \\ -2 \end{pmatrix}\)
10. \(l = \begin{pmatrix} 3 \\ -1 \end{pmatrix}\)
11. \(h = \begin{pmatrix} -4 \\ 0 \end{pmatrix}\)
12. \(i = \begin{pmatrix} 6 \\ 2 \end{pmatrix}\)
13. \(m = \begin{pmatrix} 0 \\ -4 \end{pmatrix}\)
14. \(n = \begin{pmatrix} 4 \\ 2 \end{pmatrix}\)

1. \((7,4)\)
2. \((-1,2)\)
3. \((-3,7)\)
4. \((-1,5)\)
5. \((8,1)\)
6. \((8,0)\)
7. \((-9,-1)\)
8. \((-7,3)\)
9. \((-6,-1)\)
10. \((-2,0)\)
11. \((-2,-3)\)
12. \((-1,-3)\)
13. \((-1,-10)\)
14. \((-2,-3)\)
15. \((3,-2)\)
16. \((-2,-3)\)
17. \((1,3)\)
18. \((-2,-3)\)
19. \((-7,4)\)
20. \((-1,-10)\)

EXERCISE 20d (p. 299)

1. \(\begin{pmatrix} 6 \\ 2 \end{pmatrix}\)
2. \(\begin{pmatrix} 5 \\ -1 \end{pmatrix}\)
3. \(\begin{pmatrix} -6 \\ -1 \end{pmatrix}\)
4. \(\begin{pmatrix} 6 \\ 5 \end{pmatrix}\)
5. \(\begin{pmatrix} -5 \\ 3 \end{pmatrix}\)
6. \(\begin{pmatrix} 2 \\ -2 \end{pmatrix}\)
7. \(\begin{pmatrix} -2 \\ -6 \end{pmatrix}\)
8. \(\begin{pmatrix} -4 \\ -5 \end{pmatrix}\)
9. \(\begin{pmatrix} 0 \\ -12 \end{pmatrix}\)
10. \(\begin{pmatrix} 2 \\ 8 \end{pmatrix}\)

EXERCISE 20e (p. 301)

1. a) \(b = 2a\)
 b) \(c = -a\)
 c) \(d = 3a\)
 d) \(e = a\)
 e) \(b = 2e\)
 f) \(d = -3c\)

2. \(a = \begin{pmatrix} 4 \\ -2 \end{pmatrix}\)
 b) \(\begin{pmatrix} -2 \\ -3 \end{pmatrix}\)
 c) \(\begin{pmatrix} -4 \\ -6 \end{pmatrix}\)
 d) \(\begin{pmatrix} 2 \\ 3 \end{pmatrix}\)
 e) \(\begin{pmatrix} 8 \\ -4 \end{pmatrix}\)
 f) \(\begin{pmatrix} -4 \\ 2 \end{pmatrix}\)
 g) \(\begin{pmatrix} 6 \\ 9 \end{pmatrix}\)
 h) \(\begin{pmatrix} 0 \\ -8 \end{pmatrix}\)

 e = \(2a, f = -a, h = -2a, c = 2b, d = -b, g = -3b, h = -e, g = 3d, h = 2f, \ldots\)

3. \(\begin{pmatrix} 8 \\ 12 \\ -6 \\ 3 \end{pmatrix}\)
 4. \(\begin{pmatrix} 2 \\ -4 \\ -4 \\ 8 \end{pmatrix}\)
 5. \(\begin{pmatrix} 10 \\ -8 \\ -5 \\ 4 \end{pmatrix}\)
 6. \(\begin{pmatrix} 3 \\ 6 \\ -6 \\ 12 \end{pmatrix}\)
 7. \(\begin{pmatrix} 10 \\ 15 \\ -20 \\ 3 \end{pmatrix}\)
 8. \(\begin{pmatrix} -6 \\ 0 \\ 4 \\ -10 \end{pmatrix}\)
 9. \(\begin{pmatrix} -6 \\ 4 \\ -18 \\ 8 \end{pmatrix}\)
 10. \(\begin{pmatrix} -18 \\ -60 \\ 24 \\ -10 \end{pmatrix}\)

EXERCISE 20f (p. 303)

1. \(\begin{pmatrix} 7 \\ -1 \end{pmatrix}\)
2. \(\begin{pmatrix} -8 \end{pmatrix}\)
3. \(\begin{pmatrix} 10 \\ 0 \end{pmatrix}\)
4. \(\begin{pmatrix} 4 \\ 3 \end{pmatrix}\)
5. \(\begin{pmatrix} 10 \\ -4 \end{pmatrix}\)
6. \(\begin{pmatrix} 0 \end{pmatrix}\)
7. \(\begin{pmatrix} 7 \\ 8 \end{pmatrix}\)
8. \(\begin{pmatrix} 10 \\ 0 \end{pmatrix}\)
9. \(\begin{pmatrix} 7 \\ 8 \end{pmatrix}\)
10. \(\begin{pmatrix} 6 \\ -4 \end{pmatrix}\)
11. \(\begin{pmatrix} -2 \\ -4 \end{pmatrix}\)
12. \(\begin{pmatrix} -5 \\ -2 \end{pmatrix}\)
EXERCISE 20g (p. 306)

1. a) \(\begin{pmatrix} 7 \\ 5 \end{pmatrix} \) b) \(\begin{pmatrix} 7 \\ 5 \end{pmatrix} \) c) \(\begin{pmatrix} 8 \\ 6 \end{pmatrix} \) d) \(\begin{pmatrix} 8 \\ 6 \end{pmatrix} \) e) \(\begin{pmatrix} 4 \\ 6 \end{pmatrix} \) f) \(\begin{pmatrix} 6 \\ 9 \end{pmatrix} \) g) \(\begin{pmatrix} 10 \\ 9 \end{pmatrix} \) h) \(\begin{pmatrix} 10 \\ 9 \end{pmatrix} \)

2. a) \(\begin{pmatrix} 3 \\ 2 \end{pmatrix} \) b) \(\begin{pmatrix} 3 \\ 2 \end{pmatrix} \) c) \(\begin{pmatrix} 0 \\ -5 \end{pmatrix} \) d) \(\begin{pmatrix} 0 \\ -5 \end{pmatrix} \) e) \(\begin{pmatrix} -6 \\ 12 \end{pmatrix} \) f) \(\begin{pmatrix} -20 \\ -12 \end{pmatrix} \)

3. a) \(\begin{pmatrix} 5 \\ 10 \end{pmatrix} \) b) \(\begin{pmatrix} 18 \\ 24 \end{pmatrix} \) c) \(\begin{pmatrix} 12 \\ 24 \end{pmatrix} \)

4. a) \(\begin{pmatrix} -19 \\ -1 \end{pmatrix} \) b) \(\begin{pmatrix} 4 \\ -11 \end{pmatrix} \)

EXERCISE 20h (p. 307)

1. \(\begin{pmatrix} 5 \\ 3 \end{pmatrix} \) 5. \(\begin{pmatrix} 2 \\ 1 \end{pmatrix} \) 9. \(\begin{pmatrix} -3 \\ -2 \end{pmatrix} \) 13. \(\begin{pmatrix} 5 \\ 10 \end{pmatrix} \) 16. \(\begin{pmatrix} 2 \\ 3 \end{pmatrix} \)

2. \(\begin{pmatrix} 0 \\ 6 \end{pmatrix} \) 6. \(\begin{pmatrix} 3 \\ 2 \end{pmatrix} \) 10. \(\begin{pmatrix} -7 \\ 3 \end{pmatrix} \) 14. \(\begin{pmatrix} 4 \\ -5 \end{pmatrix} \) 17. \(\begin{pmatrix} -3 \\ 11 \end{pmatrix} \)

3. \(\begin{pmatrix} 2 \\ 4 \end{pmatrix} \) 7. \(\begin{pmatrix} 11 \\ 9 \end{pmatrix} \) 11. \(\begin{pmatrix} 2 \\ 4 \end{pmatrix} \) 15. \(\begin{pmatrix} 4 \\ -1 \end{pmatrix} \) 18. \(\begin{pmatrix} -11 \\ 7 \end{pmatrix} \)

4. \(\begin{pmatrix} -5 \\ 1 \end{pmatrix} \) 8. \(\begin{pmatrix} 5 \\ 8 \end{pmatrix} \) 12. \(\begin{pmatrix} 1 \\ -1 \end{pmatrix} \)

19. a) \(\begin{pmatrix} 1 \\ 2 \end{pmatrix} \) b) \(\begin{pmatrix} -1 \\ -2 \end{pmatrix} \)

20. a) \(\begin{pmatrix} -6 \\ -4 \end{pmatrix} \) b) \(\begin{pmatrix} -3 \\ -3 \end{pmatrix} \) c) \(\begin{pmatrix} 3 \\ 3 \end{pmatrix} \)

21. a) \(\begin{pmatrix} 8 \\ 2 \end{pmatrix} \) b) \(\begin{pmatrix} 9 \\ 19 \end{pmatrix} \) c) \(\begin{pmatrix} 0 \\ -22 \end{pmatrix} \) d) \(\begin{pmatrix} 10 \\ 11 \end{pmatrix} \) e) \(\begin{pmatrix} 0 \\ 3 \end{pmatrix} \)

22. a) \(\begin{pmatrix} -3 \\ 18 \end{pmatrix} \) b) \(\begin{pmatrix} -3 \\ 0 \end{pmatrix} \) c) \(\begin{pmatrix} 3 \\ 8 \end{pmatrix} \) d) \(\begin{pmatrix} 0 \\ -23 \end{pmatrix} \) e) \(\begin{pmatrix} -4 \\ 22 \end{pmatrix} \)

23. a) \(\begin{pmatrix} 5 \\ -10 \end{pmatrix} \) b) \(\begin{pmatrix} -17 \\ 14 \end{pmatrix} \) c) \(\begin{pmatrix} 20 \\ -14 \end{pmatrix} \)

CHAPTER 21 More Algebra

This work should be done only with above average ability children and even then it can be left until alter. The work in this chapter is repeated in Book 2A.
EXERCISE 21a (p. 309)

1. 2x + 2
2. 9x – 6
3. 5x + 30

4. 12x – 12
5. 8 + 10x
6. 12 + 10a

7. 5a + 5b
8. 16x – 12
9. 18 – 12x

10. 5x – 5
11. 14 – 7x
12. 24 – 16x

EXERCISE 21b (p. 309)

1. 6x + 4
2. 10x + 18
3. 3x + 7

4. 14x – 18
5. 8 + 10
6. 16

7. 5x – 3
8. 12 + 10
9. 16

10. 5x – 5
11. 14 – 7x
12. 24 – 16x

EXERCISE 21c (p. 311)

Multiplication of directed numbers: can be introduced in many ways. When this work is done with average ability children they will probably benefit from a more practical approach.

EXERCISE 21d (p. 312)

EXERCISE 21e (p. 313)

EXERCISE 21f (P. 314)
EXERCISE 21g (p. 315)
Should be used for discussion. Only the most able pupils should be allowed to work on their own.

1. 11 4. 12 7. 20p 10. 80º 12. 45º
2. 6 5. 22p 8. 4 11. 6 13. 4
3. 9cm 6.16 9. 18p

The remainder of this chapter can be omitted. The work is repeated in later books.

EXERCISE 21h (p. 317)

1. \(z^3\) 15. \(12a\) 29. \(2a^3bc\)
2. \(a^5\) 16. \(a^2b\) 30. \(24x^2y\)
3. \(b^5\) 17. \(15xz^2\) 31. \(z^4\)
4. \(y^5\) 18. \(5a^2b^2\) 32. \(6z^2\)
5. \(s^3\) 19. \(3xz\) 33. \(24x^3\)
6. \(z^6\) 20. \(2a \times b \times c\) 34. \(16x\)
7. \(a \times a \times a\) 21. \(4xyz\) 35. \(4y^3\)
8. \(x \times x \times x \times x\) 22. \(6a \times a \times b\) 36. \(x^6\)
9. \(b \times b\) 23. \(2x \times x \times x\) 37. \(y^2z^2\)
10. \(a \times a \times a \times a \times a\) 24. \(3a \times a \times a \times a \times b \times b\) 38. \(10xyz\)
11. \(x \times x \times x \times x \times x\) 25. \(6xz\) 39. \(a^7\)
12. \(z \times z \times z \times z\) 26. \(6x^3\) 40. \(8x^4\)
13. \(2a\) 27. \(12a^2\) 41. \(axyz\)
14. \(4x^2\) 28. \(6a^3\) 42. \(s^7\)

EXERCISE 21i (p. 318)

1. 2 8. \(\frac{\sqrt{2}}{\sqrt{3}}\) 15. \(\frac{9}{7}\) or \(1\frac{2}{7}\) 21. \(\frac{\sqrt{2}}{\sqrt{3}}\) 27. \(\frac{20}{37}\)
2. \(\frac{\sqrt{2}}{3}\) or \(4\frac{2}{3}\) 9. \(\frac{\sqrt{3}}{10}\) 16. 2 22. \(\frac{\sqrt{2}}{2}\) 28. 1
3. \(\frac{\sqrt{5}}{\sqrt{7}}\) 10. 6 17. 4 23. \(\frac{\sqrt{2}}{\sqrt{3}}\) 29. \(\frac{\sqrt{2}}{4}\)
4. \(\frac{\sqrt{3}}{\sqrt{5}}\) 11. \(\frac{\sqrt{5}}{\sqrt{7}}\) 18. \(\frac{\sqrt{2}}{3}\) 24. 1 30. \(\frac{\sqrt{2}}{\sqrt{3}}\)
5. \(\frac{\sqrt{3}}{\sqrt{5}}\) 12. \(\frac{\sqrt{5}}{\sqrt{7}}\) 19. \(\frac{\sqrt{5}}{\sqrt{7}}\) 25. \(\frac{\sqrt{2}}{\sqrt{3}}\) 31. \(\frac{\sqrt{2}}{\sqrt{3}}\)
6. \(\frac{\sqrt{3}}{\sqrt{5}}\) or \(1\frac{1}{3}\) 13. \(\frac{\sqrt{2}}{\sqrt{3}}\) 20. \(\frac{\sqrt{2}}{\sqrt{3}}\) 26. \(\frac{\sqrt{2}}{\sqrt{3}}\) or \(1\frac{1}{3}\) 32. \(\frac{\sqrt{2}}{\sqrt{3}}\)
7. 3 14. \(\frac{\sqrt{2}}{\sqrt{3}}\) or \(1\frac{1}{3}\)

EXERCISE 21j (p. 320)

1. \(x = 5\) 3. \(13\) 5. \(4 \times a \times a\) 7. \(2x - 1\) 8. \(x = 0\)
2. \(4x - 11\) 4. \(x = -4\) 6. \(x = 1\frac{1}{3}\)

EXERCISE 21k (p. 320)
1. \(x = -\frac{1}{2} \)
2. \(-2x + 15\)
3. 12
4. 60abc
5. 12
6. 1

EXERCISE 21I (p. 320)

1. \(x = 2 \)
2. \(-2x + 15\)
3. \(6 + x + 12 = 4x; x = 6 \)
4. \(x = -3 \)
5. \(4 - x \)
6. \(\frac{4}{5} \)
7. \(6x + 4 \)
8. \(-2x + 10\)

EXERCISE 21m (p. 321)

1. \(x = -3 \)
2. \(\frac{8}{3} \) or \(1\frac{5}{3} \)
3. \(x = 1 \)
4. \(x + x + 2 + 8 = 18; \) £4
5. \(x \times x \times x \times x \times x \)
6. \(4x - 6 \)
7. \(5 - x \)
8. We get \(3 = 0 \) which cannot be true (This problem can be used to discuss \(\infty \).)

CHAPTER 22 Statistics

EXERCISE 22a (p. 322)

If a copy of the table is made then each item in the table can be crossed out once it has been “counted”. The answers give the frequencies in each group.

1. 7, 14, 17, 22, 12
2. 4, 22, 18, 17, 2, 1, 1
3. 1, 2, 10, 15, 16, 20, 10, 6, 2

EXERCISE 22b (p. 323)

1.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>7</td>
<td>15</td>
<td>4</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>V</th>
<th>C</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>14</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>

3.

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>G</th>
<th>B</th>
<th>Y</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>17</td>
<td>3</td>
<td>4</td>
<td>14</td>
<td>6</td>
</tr>
</tbody>
</table>

4.

<table>
<thead>
<tr>
<th></th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>1</td>
<td>10</td>
<td>15</td>
<td>11</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

EXERCISE 22c (p. 325)

1. a) 55 b) car
2. a) 52
3. a) plain salted
4. a) red

EXERCISE 22d (p. 326)
1. a) a cat b) 8 c) 28
2. a) 8 b) 1 mark, 1 pupil c) 8 d) 28
3. a) 6 b) Art c) French
4. a) Castle Hill b) 10 000 c) Brotton, with 6500

EXERCISE 22e (p. 329)

1. a) 47 b)

<table>
<thead>
<tr>
<th>1–3</th>
<th>4–6</th>
<th>7–9</th>
<th>10–12</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>25</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

2.

<table>
<thead>
<tr>
<th>1–3</th>
<th>4–6</th>
<th>7–9</th>
<th>10–12</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>34</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

3. a) 19 b) 11 c) 16 d) not possible to say
4. a) 153 b) 128 c) not possible to say
6. a) 12 b) 3 c) number given includes those who read five books

EXERCISE 22f (p. 331)

1. a) seven car lengths b) one car length per 10mph c) weather, light, amount of traffic, type and straightness of road
2. a) all electric b) all gas c) solid fuel d) gas
3. a) Margate b) June c) December in Aberdeen, January in Margate

EXERCISE 22g (p. 334)
The answers are the angles for each slice.

1. 96°, 132°, 60°, 42°, 30° 7. 96°, 120°, 36°, 72°, 36°
2. 128°, 152°, 48°, 24°, 8° 8. 108°, 180°, 40°, 18°, 14°
3. 303°, 3°, 30°, 24° 9. 72°, 13.5°, 85.5°, 94.5°, 54°, 40.5°
4. 84°, 204°, 48°, 24° 10. 62°, 82°, 82°, 21°, 10°, 103°
5. 144°, 48°, 80°, 88° 11. 223°, 40°, 54°, 36°, 7°
6. 140°, 70°, 70°, 80° 12. 35°, 116°, 128°, 58°, 23°

EXERCISE 22h (p. 337)

1. a) business and professional b) i) \(\frac{1}{12}\) ii) \(\frac{7}{30}\)
2. a) heating b) a little less
3. a) i) \(\frac{1}{8}\) ii) \(\frac{1}{7}\) b) under 10 and 10–19

EXERCISE 22i (p. 338)

1. a) 10, 14, 10, 22 b) danger c) very effective (open to discussion)
2. a) French b) 18, 15, 11, 12, 16: total 72 c) this is not a good way to present the information because it is not clear how many pupils part of a body represents (open to discussion).
3. a) consumption is rising each year
b) impression is given by the volume of the bottle which goes up more quickly than the height of the bottle

EXERCISE 22j (p. 340)

1. 6
2. 25p
3. a) £40 b) £8 c) £8
4. 10
5. a) 5 b) 15 c) 33 d) 2.6
6. 12
7. 13.5p
8. 7.2
9. 308.8p
10. 329

EXERCISE 22k (p. 342)

1. 40cm
2. 27p
3. a) 12p b) 0.4kg c) 10mm d) £3.25
4. a) 44cm b) 147.3cm
5. a) 12 b) 10.3
6. a) 48p b) 25p

CHAPTER 23 Decision Trees

EXERCISE 23a 1. (p. 344)
2 a)

- Mixed buttons
- Is it small?
 - Yes
 - Has it two holes?
 - Yes
 - These are small with two holes
 - No
 - These are small with four holes
 - No
 - Has it two holes?
 - Yes
 - These are large with two holes
 - No
 - These are large with four holes

b)

- Mixed buttons
- Has it two holes?
 - Yes
 - Is it small?
 - Yes
 - These are small with two holes
 - No
 - These are large with two holes
 - No
 - Is it small?
 - Yes
 - These are small with four holes
 - No
 - These are large with four holes
3 a) separate knives from forks first; separate stainless steel from silver-plated first
b) i)
Mixed cutlery

Is it silver-plated?

Yes

Is it a fork?

Yes

These are silver-plated forks

No

These are silver-plated knives

No

Is it a fork?

Yes

These are stainless steel forks

No

These are stainless steel knives
5. a) 6
 b) 3-4 inch goldfish; 5-6 inch goldfish; 3-4 inch orfe; 5-6 inch orfe; 3-4 inch rudd; 5-6 inch rudd.
6. Contents of cupboard
 Is it a tin?
 Yes
 Is it fruit?
 Yes
 These are large bottles of fruit
 No
 These are small bottles of fruit
 No
 Is it large?
 Yes
 These are large tins of vegetables
 No
 These are small tins of vegetables
 No
 Is it fruit?
 Yes
 These are large bottles of vegetables
 No
 These are small bottles of vegetables
 No
 Is it large?
 Yes
 These are large bottles of fruit
 No
 These are small bottles of fruit
 Yes
 These are large bottles of fruit
7. a) Carpet samples

- Is it Wilton? (Yes)
 - Is it plain? (Yes)
 - Is it standard? (Yes)
 - Top quality patterned Wilton
 - Is it standard? (No)
 - Standard plain Wilton
 - Is it plain? (No)
 - Is it standard? (Yes)
 - Top quality patterned Axminster
 - Is it standard? (No)
 - Standard plain Axminster

- Is it Wilton? (No)
 - Is it plain? (Yes)
 - Is it standard? (Yes)
 - Top quality patterned Axminster
 - Is it standard? (No)
 - Standard plain Axminster
 - Is it plain? (No)
 - Is it standard? (Yes)
 - Top quality plain Wilton
 - Is it standard? (No)
 - Plain standard Wilton
8. a) 8

Pupils

Is it a girl?

Yes

Under 12?

Yes

Wearing school uniform?

Yes

Girls under 12 in uniform

No

Girls under 12 not in uniform

No

Under 12?

Yes

Wearing school uniform?

Yes

Boys under 12 in uniform

No

Boys under 12 not in uniform

No

Wearing school uniform?

Yes

Boys over 12 in uniform

No

Boys over 12 not in uniform

No

Wearing school uniform?

Yes

Boys over 12 in uniform

No

Boys over 12 not in uniform
b)

Yes

Girls under 12 in uniform

Under 12?

No

Girls over 12 in uniform

Wearing school uniform?

Yes

Girls under 12 not in uniform

Under 12?

No

Girls over 12 not in uniform

Is it a girl?

No

Yes

Boys under 12 in uniform

Under 12?

No

Boys over 12 in uniform

Wearing school uniform?

Yes

Boys under 12 not in uniform

Under 12?

No

Boys over 12 not in uniform

c) Yes